class Bidiagonal[MatT <: MatriD] extends Error
The Bidiagonal
class is used to create a bidiagonal matrix from matrix 'a'.
It uses the Householder Bidiagonalization Algorithm to compute orthogonal
matrices 'u' and 'v' such that
u.t * a * v = b a = u * b * v.t
where matrix 'b' is bidiagonal, i.e., it will only have non-zero elements on its main diagonal and its super-diagonal (the diagonal above the main).
u is an m-by-n matrix
b is an n-by-n matrix (bidiagonal - FIX: use BidMatrixD
)
v is an n-by-n matrix
- Alphabetic
- By Inheritance
- Bidiagonal
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Bidiagonal(a: MatT)
- a
the m-by-n matrix to bidiagonalize (requires m >= n)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bidiagonalize(): (MatriD, MatriD, MatriD)
Bidiagonalize matrix 'a' using the Householder Bidiagonalization Algorithm to compute orthogonal matrices 'u' and 'v' such that 'u.t * a * v = b' where matrix 'b' is bidiagonal.
-
def
bmax: Double
Return the maximum column magnitude from bidiagonal matrix 'b'.
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
e_q: (VectorD, VectorD)
Return the super-diagonal 'e' and main diagonal 'q' as vectors.
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
sdot(v1: VectoD, v2: VectoD, from: Int = 0): Double
Compute the sliced dot product.
Compute the sliced dot product. Take the dot product of two row/column vectors starting from the 'from' parameter.
- v1
the first vector
- v2
the second vector
- from
the offset from which to compute the sliced dot product
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(): Unit
Test whether the product of factorization equals the orginal matrix.
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )