class Fac_LQ extends Factorization with Error
The Fac_LQ
class provides methods to factor an 'm-by-n' matrix 'aa' into the
product of two matrices, when m < n.
'l' - an 'm-by-m' left lower triangular matrix 'q' - an 'm-by-n' orthogonal matrix and
such that 'aa = l * q'. Note, orthogonal means that 'q.t * q = I'.
- Alphabetic
- By Inheritance
- Fac_LQ
- Error
- Factorization
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
factor(): Unit
Factor matrix 'art' into the product of two matrices, 'art = qt * rt'.
Factor matrix 'art' into the product of two matrices, 'art = qt * rt'. Then compute 'r' and 'q'.
- Definition Classes
- Fac_LQ → Factorization
- See also
http://math.stackexchange.com/questions/1640695/rq-decomposition
-
def
factor1(): MatriD
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the first matrix.
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the first matrix.
- Definition Classes
- Factorization
-
def
factor12(): (MatriD, MatriD)
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t' or a = q * r, returning both the first and second matrices.
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t' or a = q * r, returning both the first and second matrices.
- Definition Classes
- Factorization
-
def
factor2(): MatriD
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the second matrix.
Factor a matrix into the product of two matrices, e.g., 'a = l * l.t', returning only the second matrix.
- Definition Classes
- Factorization
-
val
factored: Boolean
Flag indicating whether the matrix has been factored
Flag indicating whether the matrix has been factored
- Attributes
- protected
- Definition Classes
- Factorization
-
def
factors: (MatriD, MatriD)
Return the two factored matrices.
Return the two factored matrices.
- Definition Classes
- Fac_LQ → Factorization
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
Show the flaw by printing the error message.
Show the flaw by printing the error message.
- method
the method where the error occurred
- message
the error message
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
solve(b: VectoD): VectoD
Solve for 'x' in 'aa*x = b' using the 'QR' Factorization 'aa = l*q' via 'x = q.t * l.inv * b'.
Solve for 'x' in 'aa*x = b' using the 'QR' Factorization 'aa = l*q' via 'x = q.t * l.inv * b'. FIX: need method that does not require calling 'inverse'
- b
the constant vector
- Definition Classes
- Fac_LQ → Factorization
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )