Packages

o

scalation.linalgebra

Householder

object Householder

The Householder object provides methods to compute Householder vectors and reflector matrices.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Householder
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  11. def house(x: VectoD): (VectorD, Double)

    Compute a Householder vector 'v' and its corresponding scalar 'b', where 'P = I - b * v * v.t' is an orthogonal matrix and 'Px = ||x|| * e_1'.

    Compute a Householder vector 'v' and its corresponding scalar 'b', where 'P = I - b * v * v.t' is an orthogonal matrix and 'Px = ||x|| * e_1'.

    x

    the vector to create the Householder vector from

    See also

    Algorithm 5.1.1 in Matrix Computations.

  12. def houseR(x: VectorD): MatrixD

    Compute the Householder reflector matrix 'h = I - 2*u*u.t'.

    Compute the Householder reflector matrix 'h = I - 2*u*u.t'.

    x

    the vector to create the Householder reflector from

    See also

    www.math.siu.edu/matlab/tutorial4.pdf

  13. def houseV(x: VectorD): VectorD

    Compute the Householder unit vector 'u', where 'P = I - b * u * u.t' is an orthogonal matrix.

    Compute the Householder unit vector 'u', where 'P = I - b * u * u.t' is an orthogonal matrix.

    x

    the vector to create the unit Householder vector from

    See also

    www.math.siu.edu/matlab/tutorial4.pdf

  14. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  19. def toString(): String
    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped