class Regression_F2S extends Predictor
The Regression_F2S
class performs functional linear regression with
scaler response and functional covariates.
y = a + <b(t),x(t)> + ε
where <b, x>
denotes the inner product of b
and x
.
- Alphabetic
- By Inheritance
- Regression_F2S
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Regression_F2S(x: MatriD, y: VectoD, t: VectoD, bf: DBasisFunction, technique: RegTechnique = Cholesky, lambda: Double = 1E-4)
- x
the covariate matrix - treated as functional
- y
the response vector
- t
the time vector
- bf
the basis function object with derivatives support
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val _1: VectorD
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
crossValidate(k: Int): Double
Test the accuracy of the predicted results by cross-validation, returning the sse.
Test the accuracy of the predicted results by cross-validation, returning the sse.
- k
number of crosses and cross-validations (defaults to 10x).
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(): Unit
Compute the error and useful diagnostics for the entire dataset.
Compute the error and useful diagnostics for the entire dataset.
- Definition Classes
- Regression_F2S → Predictor
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector FIX - implement in classes
- Definition Classes
- Predictor
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
parameter: VectoD
Return the vector of parameter/coefficient values.
Return the vector of parameter/coefficient values.
- Definition Classes
- Predictor
-
def
predict(z: VectoD): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Regression_F2S → Predictor
-
def
predict(xf: FunctionS2S): Double
Predict the y-value at time point 'tt'.
Predict the y-value at time point 'tt'.
- xf
the given function of time
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- Predictor
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- val t0: Double
-
def
test(itest: VectoI): Unit
Test the model on the testing set for cross-validation purposes
Test the model on the testing set for cross-validation purposes
- itest
indicies of the testing set
- val tn: Double
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(itest: IndexedSeq[Int]): Unit
Train the model on the training set for cross-validation purposes
Train the model on the training set for cross-validation purposes
- itest
indicies of the testing set, to be excluded for training
-
def
train(): Regression_F2S
Train the model using the smoothed data to find the regression coefficients 'b'.
-
def
train(yy: VectoD): Regression_F2S
Train the model using the smoothed data to find the regression coefficients 'b'.
Train the model using the smoothed data to find the regression coefficients 'b'.
- yy
response vector
- Definition Classes
- Regression_F2S → Predictor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
x_i(i: Int): VectorD
The inner product of phi and a smoothed function
The inner product of phi and a smoothed function
- i
the i-th smoothed function function
- val xmoo: IndexedSeq[Smoothing_F]
- val z: MatrixD