class Smoothing_F extends Error
The Smoothing_F
class fits a time-dependent data vector 'y' to B-Splines.
y(t(i)) = x(t(i)) + ε(t(i)) x(t) = cΦ(t)
where 'x' is the signal, 'ε' is the noise, 'c' is a coefficient vector and 'Φ(t)' is a vector of basis functions.
- Alphabetic
- By Inheritance
- Smoothing_F
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Smoothing_F(y: VectoD, t: VectoD, bf: DBasisFunction, lambda: Double = -1, method: SmoothingMethod = ROUGHNESS, technique: RegTechnique = Cholesky)
- y
the (raw) data points/vector
- t
the data time points/vector
- bf
the basis function (with derivatives) object
- lambda
the regularization parameter (>= 0 or -1 to use GCV)
- method
the smoothing method
- technique
the factorization technique
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
calcCov(yy: VectorD, k: Int = 1): MatrixD
Calculate the correlation matrix for the basis functions.
Calculate the correlation matrix for the basis functions.
- yy
data vector
- k
lag parameter for auto-covariance
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
d1predict(tv: VectoD): VectoD
Predict the 1st derivative values at all time points in vector 'tv'.
Predict the 1st derivative values at all time points in vector 'tv'.
- tv
the given vector of time points
-
def
d1predict(tt: Double): Double
Predict the 1st derivative value at time point 'tt'.
Predict the 1st derivative value at time point 'tt'.
- tt
the given time point
-
def
d2predict(tv: VectoD): VectoD
Predict the 2nd derivative values at all time points in vector 'tv'.
Predict the 2nd derivative values at all time points in vector 'tv'.
- tv
the given vector of time points
-
def
d2predict(tt: Double): Double
Predict the 2nd derivative value at time point 'tt'.
Predict the 2nd derivative value at time point 'tt'.
- tt
the given time point
-
def
dnpredict(n: Int, tv: VectoD): VectoD
Predict the n-th derivative values at all time points in vector 'tv'.
Predict the n-th derivative values at all time points in vector 'tv'.
- n
the n-th derivative to be computed
- tv
the given vector of time points
-
def
dnpredict(n: Int)(tt: Double): Double
Predict the n-th derivative value at time point 'tt'.
Predict the n-th derivative value at time point 'tt'.
- n
the n-th derivative to be computed
- tt
the given time point
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
getBasis: DBasisFunction
Get the Basis Function object
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getLambda: Double
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
plotBasis(tt: VectoD = t): Unit
Predict the the basis functions
Predict the the basis functions
- tt
the given vector of time points
-
def
predict(tv: VectoD): VectoD
Predict the y-values at all time points in vector 'tv'.
Predict the y-values at all time points in vector 'tv'.
- tv
the given vector of time points
-
def
predict(tt: Double): Double
Predict the y-value at time point 'tt'.
Predict the y-value at time point 'tt'.
- tt
the given time point
-
def
residual: VectoD
Return the vector of residuals/errors.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(): VectoD
Train the model, i.e., determine the optimal coeifficient 'c' for the basis functions by finding optimal Lamdba to minimize gcv.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )