Packages

object StatFunction

The StatFunction companion object extends statistics vector operations to matrices. The StatFunction object/class is the functional analog to the StatVector object/class.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StatFunction
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. def corr(xa: Functions, t: VectorD): MatrixD

    Return the correlation matrix for the functions over the time points.

    Return the correlation matrix for the functions over the time points. Note: sample vs. population results in essentailly the same values.

    xa

    the array of functions

    t

    the vector of time points

  7. def cov(xa: Functions, t: VectorD): MatrixD

    Return the sample covariance matrix for the functions over the time points.

    Return the sample covariance matrix for the functions over the time points.

    xa

    the array of functions

    t

    the vector of time points

  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. def mean(xa: Functions, t: VectorD): VectorD

    Return the mean vector containing the cross-sectional means over the time points.

    Return the mean vector containing the cross-sectional means over the time points.

    xa

    the array of functions

    t

    the vector of time points

  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. def pcov(xa: Functions, t: VectorD): MatrixD

    Return the population covariance matrix for the functions over the time points.

    Return the population covariance matrix for the functions over the time points.

    xa

    the array of functions

    t

    the vector of time points

  19. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  20. def toMatrix(xa: Functions, t: VectorD): MatrixD

    Convert the array of functions 'xa' with time points 't' into a matrix.

    Convert the array of functions 'xa' with time points 't' into a matrix.

    xa

    the array of functions

    t

    the vector of time points

  21. def toString(): String
    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped