object AugLagrangian
The AugLagrangian
class implements the Augmented Lagrangian Method for
solving equality constrained optimization problems.
Minimize objective function 'f' subject to constraint 'h' to find an optimal
solution for 'x'.
min f(x) s.t. h(x) = 0
f = objective function h = equality contraint x = solution vector
Note: the hyper-parameters 'eta' and 'p0' will need to be tuned per problem.
- See also
AugLagrangianTest
for how to set up 'f', 'h' and 'grad' functions
- Alphabetic
- By Inheritance
- AugLagrangian
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- type Gradient = (VectoD, Double, Double) => VectoD
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def solve(x: VectoD, f: FunctionV_2S, h: FunctionV_2S, grad: Gradient): (VectoD, MatriD)
Solve for an optimal solution to the equality constrained optimization problem.
Solve for an optimal solution to the equality constrained optimization problem.
- x
initial guess for solution vector
- f
the objective function to be minimized
- h
the equality constraint
- grad
the gradient of Lagranian (must be specified by caller)
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated