class GradientDescent extends Minimizer with Error
The GradientDescent
class solves unconstrained Non-Linear Programming (NLP)
problems using the Gradient Descent algorithm. Given a function 'f' and a
starting point 'x0', the algorithm computes the gradient and takes steps in
the opposite direction. The algorithm iterates until it converges. The class
assumes that partial derivative functions are not available unless explicitly
given via the 'setDerivatives' method.
dir_k = -gradient (x)
minimize f(x)
- Alphabetic
- By Inheritance
- GradientDescent
- Error
- Minimizer
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new GradientDescent(f: FunctionV2S, exactLS: Boolean = true)
- f
the vector-to-scalar objective function
- exactLS
whether to use exact (e.g.,
GoldenLS
) or inexact (e.g.,WolfeLS
) Line Search
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val EPSILON: Double
- Attributes
- protected
- Definition Classes
- Minimizer
- val MAX_ITER: Int
- Attributes
- protected
- Definition Classes
- Minimizer
- val STEP: Double
- Attributes
- protected
- Definition Classes
- Minimizer
- val TOL: Double
- Attributes
- protected
- Definition Classes
- Minimizer
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def fg(x: VectorD): Double
The objective function 'f' plus a weighted penalty based on the constraint function 'g'.
The objective function 'f' plus a weighted penalty based on the constraint function 'g'. Override for constrained optimization and ignore for unconstrained optimization.
- x
the coordinate values of the current point
- Definition Classes
- Minimizer
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def lineSearch(x: VectorD, dir: VectorD, step: Double = STEP): Double
Perform an exact 'GoldenSectionLS' or inexact 'WolfeLS' line search.
Perform an exact 'GoldenSectionLS' or inexact 'WolfeLS' line search. Search in direction 'dir', returning the distance 'z' to move in that direction.
- x
the current point
- dir
the direction to move in
- step
the initial step size
- Definition Classes
- GradientDescent → Minimizer
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def setDerivatives(partials: Array[FunctionV2S]): Unit
Set the partial derivative functions.
Set the partial derivative functions. If these functions are available, they are more efficient and more accurate than estimating the values using difference quotients (the default approach).
- partials
the array of partial derivative functions
- def solve(x0: VectorD, step: Double = STEP, toler: Double = EPSILON): VectorD
Solve the Non-Linear Programming (NLP) problem using the Gradient Descent algorithm.
Solve the Non-Linear Programming (NLP) problem using the Gradient Descent algorithm.
- x0
the starting point
- step
the initial step size
- toler
the tolerance
- Definition Classes
- GradientDescent → Minimizer
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated