class GeneticAlgorithm extends AnyRef
The GeneticAlgorithm
class performs local search to find minima of functions
defined on integer vector domains (z^n).
minimize f(x) subject to g(x) <= 0, x in Z^n
- Alphabetic
- By Inheritance
- GeneticAlgorithm
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new GeneticAlgorithm(f: (VectorI) => Double, x0: VectorI, vMax: Int = 100, g: (VectorI) => Double = null, maxStep: Int = 5)
- f
the objective function to be minimize (f maps an integer vector to a double)
- x0
the starting point for the search (seed for GA)
- g
the constraint function to be satisfied, if any
- maxStep
the maximum/starting step size (make larger for larger domains)
Type Members
- type Vec_Func = (VectorI, Double)
Pair consisting of an integer vector and its functional value (a double)
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def crossOver(): Unit
For each individual in the population, cross it with some other individual.
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def fg(x: VectorI): Double
The objective function f re-scaled by a weighted penalty, if constrained.
The objective function f re-scaled by a weighted penalty, if constrained.
- x
the coordinate values of the current point
- def fitnessCrossOver(): Unit
For each individual in the population, cross it with some other individual.
For each individual in the population, cross it with some other individual. Let the crossover be dependent of the fitness of the individual.
- def fittest: Vec_Func
Find the fittest individual (smallest value of objective function).
- def genPopulation(): Unit
Generate an initial population of individuals.
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def mutate(): Unit
Randomly select individuals for mutation (change a value at one position).
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def printPopulation(): Unit
Print the current population
- def solve(): Vec_Func
Solve the minimization problem using a genetic algorithm.
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated