Packages

c

scalation.analytics

ExpRegression

class ExpRegression extends Predictor with Error

The ExpRegression class supports exponential regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the exponential regression equation

log (mu (x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k

See also

www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf

Linear Supertypes
Error, Predictor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ExpRegression
  2. Error
  3. Predictor
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ExpRegression(x: MatrixD, nonneg: Boolean, y: VectorD)

    x

    the data/design matrix

    nonneg

    whether to check that responses are nonnegative

    y

    the response vector

Value Members

  1. def coefficient: VectoD

    Return the vector of coefficient/parameter values.

    Return the vector of coefficient/parameter values.

    Definition Classes
    Predictor
  2. def diagnose(yy: VectoD): Unit

    Compute diagostics for the regression model.

    Compute diagostics for the regression model.

    yy

    the response vector

    Definition Classes
    ExpRegressionPredictor
  3. def fit: VectorD

    Return the quality of fit.

    Return the quality of fit.

    Definition Classes
    ExpRegressionPredictor
  4. def fitLabels: Seq[String]

    Return the labels for the fit.

    Return the labels for the fit.

    Definition Classes
    ExpRegressionPredictor
  5. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  6. def ll(b: VectorD): Double

    For a given parameter vector b, compute '-2 * Log-Likelihood' (-2LL).

    For a given parameter vector b, compute '-2 * Log-Likelihood' (-2LL). '-2LL' is the standard measure that follows a Chi-Square distribution.

    b

    the parameters to fit

    See also

    www.statisticalhorizons.com/wp-content/uploads/Allison.StatComp.pdf

    www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf

  7. def ll_null(b: VectorD): Double

    For a given parameter vector b, compute '-2 * Log-Likelihood' (-2LL) for the null model (the one that does not consider the effects of x(i)).

    For a given parameter vector b, compute '-2 * Log-Likelihood' (-2LL) for the null model (the one that does not consider the effects of x(i)).

    b

    the parameters to fit

  8. def predict(z: VectoD): Double

    Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).

    Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).

    z

    the new vector to predict

    Definition Classes
    ExpRegressionPredictor
  9. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  10. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  11. def train(): Unit

    Train the predictor by fitting the parameter vector (b-vector) in the exponential regression equation.

    Train the predictor by fitting the parameter vector (b-vector) in the exponential regression equation.

    Definition Classes
    ExpRegressionPredictor
  12. def train(yy: VectoD): Unit

    Train the predictor by fitting the parameter vector (b-vector) in the exponential regression equation.

    Train the predictor by fitting the parameter vector (b-vector) in the exponential regression equation.

    yy

    the response vector

    Definition Classes
    ExpRegressionPredictor