class Regression_WLS[MatT <: MatriD, VecT <: VectoD] extends Regression[MatriD, VectoD]
The Regression_WLS
class supports weighted multiple linear regression.
In this case, 'xx' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter
vector 'b' in the regression equation
yy = b dot xx + e = b_0 + b_1 * xx_1 + ... b_k * xx_k + e
where 'e' represents the residuals (the part not explained by the model). Use Weighted Least-Squares (minimizing the residuals) to fit the parameter vector
b = fac.solve (.)
The data matrix 'xx' is reweighted 'x = rootW * xx' and the response vector 'yy' is reweighted 'y = rootW * yy' where 'rootW' is the square root of the weights.
- See also
www.markirwin.net/stat149/Lecture/Lecture3.pdf
en.wikipedia.org/wiki/Least_squares#Weighted_least_squares These are then pass to OLS Regression. Four factorization techniques are provided: 'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: better than Inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
- Alphabetic
- By Inheritance
- Regression_WLS
- Regression
- Error
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
Regression_WLS(xx: MatT, yy: VecT, technique: RegTechnique = QR, w: VectoD = null)
- xx
the input/data m-by-n matrix (augment with a first column of ones to include intercept in model)
- yy
the response vector
- technique
the technique used to solve for b in x.t*w*x*b = x.t*w*y
- w
the weight vector (if null, computed in companion object)
Type Members
-
type
Fac_QR = Fac_QR_H[MatriD]
- Definition Classes
- Regression
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
var
aic: Double
- Attributes
- protected
- Definition Classes
- Regression
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
backElim(): (Int, VectoD, VectorD)
Perform backward elimination to remove the least predictive variable from the model, returning the variable to eliminate, the new parameter vector and the new quality of fit.
Perform backward elimination to remove the least predictive variable from the model, returning the variable to eliminate, the new parameter vector and the new quality of fit.
- Definition Classes
- Regression
-
var
bic: Double
- Attributes
- protected
- Definition Classes
- Regression
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
coefficient: VectoD
Return the vector of coefficient/parameter values.
Return the vector of coefficient/parameter values.
- Definition Classes
- Predictor
-
val
df: Int
- Attributes
- protected
- Definition Classes
- Regression
-
def
diagnose(yy: VectoD): Unit
Compute diagostics for the regression model.
Compute diagostics for the regression model.
- yy
the response vector
- Definition Classes
- Regression_WLS → Regression → Predictor
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
var
fStat: Double
- Attributes
- protected
- Definition Classes
- Regression
-
val
fac: Factorization
- Attributes
- protected
- Definition Classes
- Regression
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectorD
Return the quality of fit.
Return the quality of fit.
- Definition Classes
- Regression → Predictor
-
def
fitLabels: Seq[String]
Return the labels for the fit.
Return the labels for the fit.
- Definition Classes
- Regression → Predictor
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
k: Int
- Attributes
- protected
- Definition Classes
- Regression
-
val
m: Double
- Attributes
- protected
- Definition Classes
- Regression
-
val
mae: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
var
p: VectoD
- Attributes
- protected
- Definition Classes
- Regression
-
def
predict(z: MatriD): VectoD
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
- z
the new matrix to predict
- Definition Classes
- Regression
-
def
predict(z: VectoD): Double
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', e.g., '(b_0, b_1, b_2) dot (1, z_1, z_2)'.
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', e.g., '(b_0, b_1, b_2) dot (1, z_1, z_2)'.
- z
the new vector to predict
- Definition Classes
- Regression → Predictor
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
var
rBarSq: Double
- Attributes
- protected
- Definition Classes
- Regression
-
val
rSq: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
r_df: Double
- Attributes
- protected
- Definition Classes
- Regression
-
def
report(): Unit
Print results and diagnostics for each predictor 'x_j' and the overall quality of fit.
Print results and diagnostics for each predictor 'x_j' and the overall quality of fit.
- Definition Classes
- Regression
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- Predictor
-
val
rmse: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
sse: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
ssr: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
val
sst: Double
- Attributes
- protected
- Definition Classes
- Predictor
-
var
stdErr: VectoD
- Attributes
- protected
- Definition Classes
- Regression
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
var
t: VectoD
- Attributes
- protected
- Definition Classes
- Regression
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(): Unit
Train the predictor by fitting the parameter vector (b-vector) in the multiple regression equation for the response passed into the class 'y'.
Train the predictor by fitting the parameter vector (b-vector) in the multiple regression equation for the response passed into the class 'y'.
- Definition Classes
- Regression → Predictor
-
def
train(yy: VectoD): Unit
Train the predictor by fitting the parameter vector (b-vector) in the multiple regression equation
Train the predictor by fitting the parameter vector (b-vector) in the multiple regression equation
yy = b dot x + e = [b_0, ... b_k] dot [1, x_1 , ... x_k] + e
using the ordinary least squares 'OLS' method.
- yy
the response vector
- Definition Classes
- Regression → Predictor
-
def
vif: VectorD
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables.
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'xj' can be predicted from the other variables, so 'xj' is a candidate for removal from the model.
- Definition Classes
- Regression
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
weights: VectoD
Return the weight vector
-
val
x: MatriD
- Attributes
- protected
- Definition Classes
- Regression
-
val
y: VectoD
- Attributes
- protected
- Definition Classes
- Regression