Packages

class SimpleRegression extends Predictor with Error

The SimpleRegression class supports simple linear regression. In this case, the vector 'x' consists of the constant one and a single variable 'x_1', i.e., (1, x_1). Fit the parameter vector 'b' in the regression equation

y = b dot x + e = (b_0, b_1) dot (1, x_1) + e = b_0 + b_1 * x_1 + e

where 'e' represents the residuals (the part not explained by the model).

Linear Supertypes
Error, Predictor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SimpleRegression
  2. Error
  3. Predictor
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SimpleRegression(x: MatrixD, y: VectorD)

    x

    the input/design matrix augmented with a first column of ones

    y

    the response vector

Value Members

  1. def coefficient: VectoD

    Return the vector of coefficient/parameter values.

    Return the vector of coefficient/parameter values.

    Definition Classes
    Predictor
  2. def diagnose(yy: VectoD): Unit

    Compute diagostics for the regression model.

    Compute diagostics for the regression model.

    yy

    the response vector

    Definition Classes
    SimpleRegressionPredictor
  3. def fit: VectorD

    Return the quality of fit including.

    Return the quality of fit including.

    Definition Classes
    SimpleRegressionPredictor
  4. def fitLabels: Seq[String]

    Return the labels for the fit.

    Return the labels for the fit.

    Definition Classes
    SimpleRegressionPredictor
  5. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  6. def predict(z: VectoD): Double

    Predict the value of y = f(z) by evaluating the formula y = b dot z, i.e.0, (b_0, b_1) dot (1, z_1).

    Predict the value of y = f(z) by evaluating the formula y = b dot z, i.e.0, (b_0, b_1) dot (1, z_1).

    z

    the new vector to predict

    Definition Classes
    SimpleRegressionPredictor
  7. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  8. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  9. def train(): Unit

    Train the predictor by fitting the parameter vector (b-vector) in the simple regression equation for the response passed into the class 'y'.

    Train the predictor by fitting the parameter vector (b-vector) in the simple regression equation for the response passed into the class 'y'.

    Definition Classes
    SimpleRegressionPredictor
  10. def train(yy: VectoD): Unit

    Train the predictor by fitting the parameter vector (b-vector) in the simple regression equation

    Train the predictor by fitting the parameter vector (b-vector) in the simple regression equation

    y = b dot x + e = (b_0, b_1) dot (1, x_1) + e

    using the least squares method.

    yy

    the response vector

    Definition Classes
    SimpleRegressionPredictor
    See also

    www.analyzemath.com/statistics/linear_regression.html