Packages

object GZLM extends GLM

A Generalized Linear Model 'GZLM' can be developed using the GZLM object. It provides factory methods for General Linear Models 'GLM' via inheritance and for proper Generalized Linear Models: LogisticRegression - logistic regression, PoissonRegression - Poisson regression, ExpRegression - Exponential regression,

Linear Supertypes
GLM, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GZLM
  2. GLM
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val add_1: Boolean
    Attributes
    protected
    Definition Classes
    GLM
  5. def apply(x: MatrixD, nonneg: Boolean, y: VectorD): ExpRegression

    Build an Exponential Regression model.

    Build an Exponential Regression model.

    x

    the input/design m-by-n matrix

    nonneg

    whether to check that responses are nonnegative

    y

    the response vector

  6. def apply(x: MatrixD, y: VectorI, fn: Array[String], poisson: Boolean): PoissonRegression

    Build a Poisson Regression model.

    Build a Poisson Regression model.

    x

    the input/design m-by-n matrix

    y

    the integer response vector, y_i in {0, 1, ... }

    fn

    the names for all factors

    poisson

    whether it is PoissonRegression

  7. def apply(x: MatrixD, y: VectorI, cn: Array[String]): LogisticRegression

    Build a Logistic Regression model.

    Build a Logistic Regression model.

    x

    the input/design m-by-n matrix

    y

    the categorical response vector, y_i in {0, 1}

    cn

    the names for both categories/classes

  8. def apply(x_: MatrixD, t: VectorI, y: VectorD, levels: Int): ANCOVA

    Build an ANalysis of COVAriance (ANCOVA) model.

    Build an ANalysis of COVAriance (ANCOVA) model.

    x_

    the data/design matrix of continuous variables

    t

    the treatment/categorical variable vector

    y

    the response vector

    levels

    the number of treatment levels (1, ... levels)

    Definition Classes
    GLM
  9. def apply(t: VectorI, y: VectorD, levels: Int): ANOVA

    Build an ANalysis Of VAriance (ANOVA) model.

    Build an ANalysis Of VAriance (ANOVA) model.

    t

    the treatment/categorical variable vector

    y

    the response vector

    levels

    the number of treatment levels (1, ... levels)

    Definition Classes
    GLM
  10. def apply(x_: MatrixD, y: VectorD, cubic: Boolean): ResponseSurface

    Build a Response Surface model.

    Build a Response Surface model.

    x_

    the input vectors/points

    y

    the response vector

    cubic

    the order of the surface (false for quadratic, true for cubic)

    Definition Classes
    GLM
  11. def apply(ty: MatrixD, k: Int, p: Int): TrigRegression

    Build a Trigonometric Regression model.

    Build a Trigonometric Regression model.

    ty

    the combined input vector and response vector

    k

    the maximum multiplier in the trig function 'kwt'

    p

    extra parameter to make apply methods unique (pass in 0)

    Definition Classes
    GLM
  12. def apply(t: VectorD, y: VectorD, k: Int, p: Int): TrigRegression

    Build a Trigonometric Regression model.

    Build a Trigonometric Regression model.

    t

    the input vector: 't_i' expands to 'x_i'

    y

    the response vector

    k

    the maximum multiplier in the trig function 'kwt'

    p

    extra parameter to make apply methods unique (pass in 0)

    Definition Classes
    GLM
  13. def apply(ty: MatrixD, k: Int): PolyRegression

    Build a Polynomial Regression model.

    Build a Polynomial Regression model.

    ty

    the combined input vector and response vector

    k

    the order of the polynomial

    Definition Classes
    GLM
  14. def apply(t: VectorD, y: VectorD, k: Int): PolyRegression

    Build a Polynomial Regression model.

    Build a Polynomial Regression model.

    t

    the input vector: t_i expands to x_i = [1, t_i, t_i2, ... t_ik]

    y

    the response vector

    k

    the order of the polynomial

    Definition Classes
    GLM
  15. def apply(xy: MatrixD, transform: FunctionS2S): TranRegression

    Build a Transformed Multiple Linear Regression model.

    Build a Transformed Multiple Linear Regression model.

    xy

    the combined input/design m-by-n matrix and response m-vector

    transform

    the transformation function

    Definition Classes
    GLM
  16. def apply(x: MatrixD, y: VectorD, transform: FunctionS2S): TranRegression

    Build a Transformed Multiple Linear Regression model.

    Build a Transformed Multiple Linear Regression model.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

    transform

    the transformation function (e.g., log)

    Definition Classes
    GLM
  17. def apply(xy: MatrixD, lambda: Double): RidgeRegression[MatrixD, VectorD]

    Build a Multiple Linear Robust Regression model.

    Build a Multiple Linear Robust Regression model.

    lambda

    the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'

    Definition Classes
    GLM
  18. def apply(x: MatrixD, y: VectorD, lambda: Double): RidgeRegression[MatrixD, VectorD]

    Build a Multiple Linear Robust Regression model.

    Build a Multiple Linear Robust Regression model.

    x

    the centered input/design m-by-n matrix NOT augmented with a first column of ones

    y

    the centered response vector

    lambda

    the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'

    Definition Classes
    GLM
  19. def apply(x: MatrixD, y: VectorD, w: VectorD): Regression_WLS[MatrixD, VectorD]

    Build a Multiple Linear Regression model using Weighted Least Squares 'WLS'.

    Build a Multiple Linear Regression model using Weighted Least Squares 'WLS'.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

    Definition Classes
    GLM
  20. def apply(xy: MatrixD): Regression[MatrixD, VectorD]

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    xy

    the combined input/design m-by-n matrix and response m-vector

    Definition Classes
    GLM
  21. def apply(x: MatrixD, y: VectorD): Regression[MatrixD, VectorD]

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

    Definition Classes
    GLM
  22. def apply(x: VectorD, y: VectorD): SimpleRegression

    Build a Simple Linear Regression model, automatically prepending the column of ones (form matrix from two column vectors [ 1 x ]).

    Build a Simple Linear Regression model, automatically prepending the column of ones (form matrix from two column vectors [ 1 x ]).

    x

    the input/design m-by-1 vector

    y

    the response m-vector

    Definition Classes
    GLM
  23. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  24. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  27. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  28. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  29. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  30. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  31. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  32. final def notify(): Unit
    Definition Classes
    AnyRef
  33. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  34. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  35. val technique: RegTechnique.Value
    Attributes
    protected
    Definition Classes
    GLM
  36. def toString(): String
    Definition Classes
    AnyRef → Any
  37. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from GLM

Inherited from AnyRef

Inherited from Any

Ungrouped