Packages

trait GLM extends AnyRef

A General Linear Model 'GLM' can be developed using the GLM trait and object (see below). The implementation currently supports univariate models with multivariate models (where each response is a vector) planned for the future. It provides factory methods for the following special types of GLMs: SimpleRegression - simple linear regression, Regression - multiple linear regression using Ordinary Least Squares 'OLS' Regression_WLS - multiple linear regression using Weighted Least Squares 'WLS' RidgeRegression - robust multiple linear regression, TranRegression - transformed (e.g., log) multiple linear regression, PolyRegression - polynomial regression, TrigRegression - trigonometric regression ResponseSurface - response surface regression, ANOVA - GLM form of ANalysis Of VAriance, ANCOVA - GLM form of ANalysis of COVAriance.

Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GLM
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val add_1: Boolean
    Attributes
    protected
  5. def apply(x_: MatrixD, t: VectorI, y: VectorD, levels: Int): ANCOVA

    Build an ANalysis of COVAriance (ANCOVA) model.

    Build an ANalysis of COVAriance (ANCOVA) model.

    x_

    the data/design matrix of continuous variables

    t

    the treatment/categorical variable vector

    y

    the response vector

    levels

    the number of treatment levels (1, ... levels)

  6. def apply(t: VectorI, y: VectorD, levels: Int): ANOVA

    Build an ANalysis Of VAriance (ANOVA) model.

    Build an ANalysis Of VAriance (ANOVA) model.

    t

    the treatment/categorical variable vector

    y

    the response vector

    levels

    the number of treatment levels (1, ... levels)

  7. def apply(x_: MatrixD, y: VectorD, cubic: Boolean): ResponseSurface

    Build a Response Surface model.

    Build a Response Surface model.

    x_

    the input vectors/points

    y

    the response vector

    cubic

    the order of the surface (false for quadratic, true for cubic)

  8. def apply(ty: MatrixD, k: Int, p: Int): TrigRegression

    Build a Trigonometric Regression model.

    Build a Trigonometric Regression model.

    ty

    the combined input vector and response vector

    k

    the maximum multiplier in the trig function 'kwt'

    p

    extra parameter to make apply methods unique (pass in 0)

  9. def apply(t: VectorD, y: VectorD, k: Int, p: Int): TrigRegression

    Build a Trigonometric Regression model.

    Build a Trigonometric Regression model.

    t

    the input vector: 't_i' expands to 'x_i'

    y

    the response vector

    k

    the maximum multiplier in the trig function 'kwt'

    p

    extra parameter to make apply methods unique (pass in 0)

  10. def apply(ty: MatrixD, k: Int): PolyRegression

    Build a Polynomial Regression model.

    Build a Polynomial Regression model.

    ty

    the combined input vector and response vector

    k

    the order of the polynomial

  11. def apply(t: VectorD, y: VectorD, k: Int): PolyRegression

    Build a Polynomial Regression model.

    Build a Polynomial Regression model.

    t

    the input vector: t_i expands to x_i = [1, t_i, t_i2, ... t_ik]

    y

    the response vector

    k

    the order of the polynomial

  12. def apply(xy: MatrixD, transform: FunctionS2S): TranRegression

    Build a Transformed Multiple Linear Regression model.

    Build a Transformed Multiple Linear Regression model.

    xy

    the combined input/design m-by-n matrix and response m-vector

    transform

    the transformation function

  13. def apply(x: MatrixD, y: VectorD, transform: FunctionS2S): TranRegression

    Build a Transformed Multiple Linear Regression model.

    Build a Transformed Multiple Linear Regression model.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

    transform

    the transformation function (e.g., log)

  14. def apply(xy: MatrixD, lambda: Double): RidgeRegression[MatrixD, VectorD]

    Build a Multiple Linear Robust Regression model.

    Build a Multiple Linear Robust Regression model.

    lambda

    the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'

  15. def apply(x: MatrixD, y: VectorD, lambda: Double): RidgeRegression[MatrixD, VectorD]

    Build a Multiple Linear Robust Regression model.

    Build a Multiple Linear Robust Regression model.

    x

    the centered input/design m-by-n matrix NOT augmented with a first column of ones

    y

    the centered response vector

    lambda

    the shrinkage parameter (0 => OLS) in the penalty term 'lambda * b dot b'

  16. def apply(x: MatrixD, y: VectorD, w: VectorD): Regression_WLS[MatrixD, VectorD]

    Build a Multiple Linear Regression model using Weighted Least Squares 'WLS'.

    Build a Multiple Linear Regression model using Weighted Least Squares 'WLS'.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

  17. def apply(xy: MatrixD): Regression[MatrixD, VectorD]

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    xy

    the combined input/design m-by-n matrix and response m-vector

  18. def apply(x: MatrixD, y: VectorD): Regression[MatrixD, VectorD]

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    Build a Multiple Linear Regression model using Ordinary Least Squares 'OLS'.

    x

    the input/design m-by-n matrix

    y

    the response m-vector

  19. def apply(x: VectorD, y: VectorD): SimpleRegression

    Build a Simple Linear Regression model, automatically prepending the column of ones (form matrix from two column vectors [ 1 x ]).

    Build a Simple Linear Regression model, automatically prepending the column of ones (form matrix from two column vectors [ 1 x ]).

    x

    the input/design m-by-1 vector

    y

    the response m-vector

  20. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  21. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  23. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  24. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  25. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  26. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  27. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  28. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  29. final def notify(): Unit
    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  31. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  32. val technique: RegTechnique.Value
    Attributes
    protected
  33. def toString(): String
    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped