class GeneticAlgorithm extends AnyRef
The GeneticAlgorithm
class performs local search to find minima of functions
defined on integer vector domains (z^n).
minimize f(x) subject to g(x) <= 0, x in Z^n
- Alphabetic
- By Inheritance
- GeneticAlgorithm
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
GeneticAlgorithm(f: (VectorI) ⇒ Double, x0: VectorI, vMax: Int = 100, g: (VectorI) ⇒ Double = null, maxStep: Int = 5)
- f
the objective function to be minimize (f maps an integer vector to a double)
- x0
the starting point for the search (seed for GA)
- g
the constraint function to be satisfied, if any
- maxStep
the maximum/starting step size (make larger for larger domains)
Type Members
-
type
Vec_Func = (VectorI, Double)
Pair consisting of an integer vector and its functional value (a double)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
crossOver(): Unit
For each individual in the population, cross it with some other individual.
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
fg(x: VectorI): Double
The objective function f re-scaled by a weighted penalty, if constrained.
The objective function f re-scaled by a weighted penalty, if constrained.
- x
the coordinate values of the current point
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fitnessCrossOver(): Unit
For each individual in the population, cross it with some other individual.
For each individual in the population, cross it with some other individual. Let the crossover be dependent of the fitness of the individual.
-
def
fittest: Vec_Func
Find the fittest individual (smallest value of objective function).
-
def
genPopulation(): Unit
Generate an initial population of individuals.
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
mutate(): Unit
Randomly select individuals for mutation (change a value at one position).
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
printPopulation(): Unit
Print the current population
-
def
solve(): Vec_Func
Solve the minimization problem using a genetic algorithm.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )