class L_BFGS_B extends Minimizer

The L_BFGS_B the class implements the Limited memory Broyden–Fletcher– Goldfarb–Shanno for Bound constrained optimization (L-BFGS-B) Quasi-Newton Algorithm for solving Non-Linear Programming (NLP) problems. L-BFGS-B determines a search direction by deflecting the steepest descent direction vector (opposite the gradient) by * multiplying it by a matrix that approximates the inverse Hessian. Furthermore, only a few vectors represent the approximation of the Hessian Matrix (limited memory). The parameters estimated are also bounded within user specified lower and upper bounds.

minimize f(x) subject to g(x) <= 0 [ optionally g(x) == 0 ]

Linear Supertypes
Minimizer, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. L_BFGS_B
  2. Minimizer
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new L_BFGS_B(f: FunctionV2S, g: FunctionV2S = null, ineq: Boolean = true, exactLS: Boolean = false, l: VectoD = null, u: VectoD = null)

    f

    the objective function to be minimized

    g

    the constraint function to be satisfied, if any

    ineq

    whether the constraint is treated as inequality (default) or equality

    exactLS

    whether to use exact (e.g., GoldenLS) or inexact (e.g., WolfeLS) Line Search

    l

    vector of lower bounds for all input parameters

    u

    vector of upper bounds for all input parameters

Type Members

  1. type Pair = (VectorD, VectorD)
    Definition Classes
    Minimizer

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val EPSILON: Double
    Attributes
    protected
    Definition Classes
    Minimizer
  5. val MAX_ITER: Int
    Attributes
    protected
    Definition Classes
    Minimizer
  6. val STEP: Double
    Attributes
    protected
    Definition Classes
    Minimizer
  7. val TOL: Double
    Attributes
    protected
    Definition Classes
    Minimizer
  8. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  9. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  12. def fg(x: VectorD): Double

    The objective function f plus a weighted penalty based on the constraint function g.

    The objective function f plus a weighted penalty based on the constraint function g.

    x

    the coordinate values of the current point

    Definition Classes
    L_BFGS_BMinimizer
  13. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. def lineSearch(x: VectorD, dir: VectorD, step: Double = STEP): Double

    Perform an exact 'GoldenSectionLS' or inexact 'WolfeLS' Line Search.

    Perform an exact 'GoldenSectionLS' or inexact 'WolfeLS' Line Search. Search in direction 'dir', returning the distance 'z' to move in that direction.

    x

    the current point

    dir

    the direction to move in

    step

    the initial step size

    Definition Classes
    L_BFGS_BMinimizer
  18. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  19. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  21. def setHistorySize(hs_: Int): Unit

    Modify the number of historical vectors to store.

    Modify the number of historical vectors to store.

    hs_

    the new history size

  22. def solve(x0: VectorD, alphaInit: Double = STEP, toler: Double = TOL): VectorD

    Solve the following Non-Linear Programming (NLP) problem using L-BFGS-B: min { f(x) | g(x) <= 0 }.

    Solve the following Non-Linear Programming (NLP) problem using L-BFGS-B: min { f(x) | g(x) <= 0 }.

    x0

    the starting point

    alphaInit

    the initial step size

    toler

    the tolerance

    Definition Classes
    L_BFGS_BMinimizer
  23. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  24. def toString(): String
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from Minimizer

Inherited from AnyRef

Inherited from Any

Ungrouped