class IntegerLocalSearch extends AnyRef
The IntegerLocalSearch
class performs local search to find minima of functions
defined on integer vector domains (z^n).
minimize f(x) subject to g(x) <= 0, x in Z^n
- Alphabetic
- By Inheritance
- IntegerLocalSearch
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
IntegerLocalSearch(f: (VectorI) ⇒ Double, g: (VectorI) ⇒ Double = null, maxStep: Int = 5)
- f
the objective function to be minimize ('f' maps an integer vector to a double)
- g
the constraint function to be satisfied, if any
- maxStep
the maximum/starting step size (make larger for larger domains)
Type Members
-
type
Vec_Func = (VectorI, Double)
Pair consisting of an integer vector and its functional value (a double)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
fg(x: VectorI): Double
The objective function 'f' re-scaled by a weighted penalty, if constrained.
The objective function 'f' re-scaled by a weighted penalty, if constrained.
- x
the coordinate values of the current point
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
minNeighbor(x_f0: Vec_Func, i: Int, step: Int = 1): Vec_Func
Find a minimal neighbor of the current point 'x' that is a distance step away.
Find a minimal neighbor of the current point 'x' that is a distance step away. Let 'x' be the current point with 'y' being a step down and 'x' being a step up in dimension 'i'. Recurse to handle all of the dimensions.
- x_f0
the current pair (the point and its functional value)
- i
the 'i'th dimension or coordinate (facilitates recursion)
- step
examine points that are this far away
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
solve(x: VectorI): Vec_Func
Solve the minimization problem by repeatedly moving to a minimal neighbor until there is no improvement.
Solve the minimization problem by repeatedly moving to a minimal neighbor until there is no improvement.
- x
the starting point for the search
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )