object LassoAdmm
The LassoAdmm
class performs LASSO regression using Alternating Direction
Method of Multipliers (ADMM). Minimize the following objective function to
find an optimal solutions for 'x'.
argmin_x (1/2)||Ax − b||_2^2 + λ||x||_1
A = data matrix b = response vector λ = weighting on the l_1 penalty x = solution (coefficient vector)
- See also
https://web.stanford.edu/~boyd/papers/admm_distr_stats.html
euler.stat.yale.edu/~tba3/stat612/lectures/lec23/lecture23.pdf
- Alphabetic
- By Inheritance
- LassoAdmm
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
fast_sthresh(v: VectoD, thr: Double): VectoD
Return the fast soft thresholding function.
Return the fast soft thresholding function.
- v
the vector to threshold
- thr
the threshold
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
reset: Unit
Reset the warm start map.
-
def
solve(a: MatrixD, b: VectoD, λ: Double = 0.01): VectoD
Solve for 'x' using ADMM.
Solve for 'x' using ADMM.
- a
the data matrix
- b
the response vector
- λ
the regularization l_1 penalty weight
-
def
solveCached(ata_ρI_inv: MatriD, atb: VectoD, λ: Double): VectoD
Solve for 'x' using ADMM using cached factorizations for efficiency.
Solve for 'x' using ADMM using cached factorizations for efficiency.
- ata_ρI_inv
cached (a.t * a + ρI)^-1
- atb
cached a.t * b
- λ
the regularization l_1 penalty weight
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- val ρ: Int