class QuasiNewton extends Minimizer with Error
The QuasiNewton
the class implements the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
Quasi-Newton Algorithm for solving Non-Linear Programming (NLP) problems.
BFGS determines a search direction by deflecting the steepest descent direction
vector (opposite the gradient) by * multiplying it by a matrix that approximates
the inverse Hessian. Note, this implementation may be set up to work with the matrix
'b' (approximate Hessian) or directly with the 'binv' matrix (the inverse of 'b').
minimize f(x) subject to g(x) <= 0 [ optionally g(x) == 0 ]
- Alphabetic
- By Inheritance
- QuasiNewton
- Error
- Minimizer
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
QuasiNewton(f: FunctionV2S, g: FunctionV2S = null, ineq: Boolean = true, exactLS: Boolean = false)
- f
the objective function to be minimized
- g
the constraint function to be satisfied, if any
- ineq
whether the constraint is treated as inequality (default) or equality
- exactLS
whether to use exact (e.g.,
GoldenLS
) or inexact (e.g.,WolfeLS
) Line Search
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
EPSILON: Double
- Attributes
- protected
- Definition Classes
- Minimizer
-
val
MAX_ITER: Int
- Attributes
- protected
- Definition Classes
- Minimizer
-
val
STEP: Double
- Attributes
- protected
- Definition Classes
- Minimizer
-
val
TOL: Double
- Attributes
- protected
- Definition Classes
- Minimizer
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
fg(x: VectorD): Double
The objective function f plus a weighted penalty based on the constraint function g.
The objective function f plus a weighted penalty based on the constraint function g.
- x
the coordinate values of the current point
- Definition Classes
- QuasiNewton → Minimizer
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
lineSearch(x: VectorD, dir: VectorD, step: Double = STEP): Double
Perform an exact 'GoldenSectionLS' or inexact 'WolfeLS' Line Search.
Perform an exact 'GoldenSectionLS' or inexact 'WolfeLS' Line Search. Search in direction 'dir', returning the distance 'z' to move in that direction. Default to
- x
the current point
- dir
the direction to move in
- step
the initial step size
- Definition Classes
- QuasiNewton → Minimizer
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
setDerivatives(partials: Array[FunctionV2S]): Unit
Set the partial derivative functions.
Set the partial derivative functions. If these functions are available, they are more efficient and more accurate than estimating the values using difference quotients (the default approach).
- partials
the array of partial derivative functions
-
def
setSteepest(): Unit
Use the Gradient Descent algorithm rather than the default BFGS algorithm.
-
def
solve(x0: VectorD, step_: Double = STEP, toler: Double = TOL): VectorD
Solve the following Non-Linear Programming (NLP) problem using BFGS: min { f(x) | g(x) <= 0 }.
Solve the following Non-Linear Programming (NLP) problem using BFGS: min { f(x) | g(x) <= 0 }. To use explicit functions for gradient, replace 'gradient (fg, x._1 + s)' with 'gradientD (df, x._1 + s)'.
- x0
the starting point
- step_
the initial step size
- toler
the tolerance
- Definition Classes
- QuasiNewton → Minimizer
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
updateBinv(s: VectorD, y: VectorD): Unit
Update the 'binv' matrix, which is used to deflect -gradient to a better search direction than steepest descent (-gradient).
Update the 'binv' matrix, which is used to deflect -gradient to a better search direction than steepest descent (-gradient). Compute the 'binv' matrix directly using the Sherman–Morrison formula.
- s
the step vector (next point - current point)
- y
the difference in the gradients (next - current)
- See also
http://en.wikipedia.org/wiki/BFGS_method
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )