object CDF extends Error
The CDF
object contains methods for computing 'F(x)', the Cumulative
Distribution Functions 'CDF's for popular distributions:
Uniform
Exponential
Weibel
Empirical
StandardNormal
StudentT
ChiSquare
Fisher
For a given CDF 'F' with argument 'x', compute 'p = F(x)'.
- Alphabetic
- By Inheritance
- CDF
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _normalCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function (CDF) for the Normal distribution.
Compute the Cumulative Distribution Function (CDF) for the Normal distribution.
- x
the x coordinate, argument to F(x)
- pr
parameters for the mean and standard deviation
- def _normalCDF(x: Double): Double
Compute the Cumulative Distribution Function (CDF) 'F(x)' for the Standard Normal distribution using the Hart function.
Compute the Cumulative Distribution Function (CDF) 'F(x)' for the Standard Normal distribution using the Hart function. Recoded in Scala from C code
- x
the x coordinate, argument to F(x)
- See also
stackoverflow.com/questions/2328258/cumulative-normal-distribution-function-in-c-c which was recoded from VB code.
www.codeplanet.eu/files/download/accuratecumnorm.pdf
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def buildEmpiricalCDF(x: VectorD): (VectorD, VectorD)
Build an empirical CDF from input data vector 'x'.
Build an empirical CDF from input data vector 'x'. Ex: x = (2, 1, 2, 3, 2) -> cdf = ((1, .2), (2, .8), (3, 1.))
- x
the input data vector
- def chiSquareCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function (CDF) for the ChiSquare distribution.
Compute the Cumulative Distribution Function (CDF) for the ChiSquare distribution.
- x
the x coordinate, argument to F(x)
- def chiSquareCDF(x: Double, df: Int): Double
Compute the Cumulative Distribution Function (CDF) for the ChiSquare distribution by numerically integrating the ChiSquare probability density function (pdf).
Compute the Cumulative Distribution Function (CDF) for the ChiSquare distribution by numerically integrating the ChiSquare probability density function (pdf). See Variate.scala.
- x
the x coordinate, argument to F(x)
- df
the degrees of freedom
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def empiricalCDF(x: Double, eCDF: (VectorD, VectorD)): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Empirical distribution 'eCDF'.
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Empirical distribution 'eCDF'.
- x
the x coordinate, argument to F(x)
- eCDF
the Empirical CDF
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exponentialCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Exponential
distribution.Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Exponential
distribution.- x
the x coordinate, argument to F(x)
- def exponentialCDF(x: Double, λ: Double): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Exponential
distribution.Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Exponential
distribution.- x
the x coordinate, argument to F(x)
- λ
the rate parameter
- def fisherCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function (CDF) for the Fisher (F) distribution using beta functions.
Compute the Cumulative Distribution Function (CDF) for the Fisher (F) distribution using beta functions.
- x
the x coordinate, argument to F(x)
- def fisherCDF(x: Double, df: (Int, Int)): Double
Compute the Cumulative Distribution Function (CDF) for the Fisher (F) distribution using beta functions.
Compute the Cumulative Distribution Function (CDF) for the Fisher (F) distribution using beta functions.
- x
the x coordinate, argument to F(x)
- df
the pair of degrees of freedom ('df1', 'df2')
- def fisherCDF(x: Double, df1: Int, df2: Int): Double
Compute the Cumulative Distribution Function (CDF) for the Fisher (F) distribution using beta functions.
Compute the Cumulative Distribution Function (CDF) for the Fisher (F) distribution using beta functions.
- x
the x coordinate, argument to F(x)
- df1
the degrees of freedom 1 (numerator)
- df2
the degrees of freedom 2 (denominator)
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def noncentralTCDF(x: Double, mu: Double, df: Double): Double
Compute the Cumulative Distribution Function (CDF) for "Noncentral t" distribution.
Compute the Cumulative Distribution Function (CDF) for "Noncentral t" distribution.
- x
the x coordinate, argument to F(x)
- mu
the noncentrality parameter (or mean)
- df
the degrees of freedom (must be > 0.0)
- See also
https://en.wikipedia.org/wiki/Noncentral_t-distribution
- def normalCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function (CDF) for the Normal distribution.
Compute the Cumulative Distribution Function (CDF) for the Normal distribution.
- x
the x coordinate, argument to F(x)
- pr
parameters for the mean and standard deviation
- def normalCDF(x: Double): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Standard Normal distribution using the Hart function.
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Standard Normal distribution using the Hart function. Recoded in Scala from Java code. Apache license given above.
- x
the x coordinate, argument to F(x)
- See also
mail-archives.apache.org/mod_mbox/commons-dev/200401.mbox/%3C20040126030431.92035.qmail@minotaur.apache.org%3E
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def studentTCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function (CDF) for "Student's t" distribution.
Compute the Cumulative Distribution Function (CDF) for "Student's t" distribution.
- x
the x coordinate, argument to F(x)
- pr
parameter for the degrees of freedom
- def studentTCDF(x: Double, df: Double): Double
Compute the Cumulative Distribution Function (CDF) for "Student's t" distribution.
Compute the Cumulative Distribution Function (CDF) for "Student's t" distribution.
- x
the x coordinate, argument to F(x)
- df
the degrees of freedom (must be > 0.0)
- See also
[JKB 1995] Johnson, Kotz & Balakrishnan "Continuous Univariate Distributions" (Volume 2) (2nd Edition) (Chapter 28) (1995)
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def uniformCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Uniform distribution.
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Uniform distribution.
- x
the x coordinate, argument to F(x)
- pr
parameters giving the end-points of the uniform distribution
- def uniformCDF(x: Double, a: Double, b: Double): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Uniform distribution.
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the Uniform distribution.
- x
the x coordinate, argument to F(x)
- a
the lower end-point of the uniform distribution
- b
the upper end-point of the uniform distribution
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def weibullCDF(x: Double, pr: Parameters = null): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Weibull
distribution.Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Weibull
distribution.- x
the x coordinate, argument to F(x)
- def weibullCDF(x: Double, α: Double, β: Double): Double
Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Weibull
distribution.Compute the Cumulative Distribution Function 'CDF' 'F(x)' for the
Weibull
distribution.- x
the x coordinate, argument to F(x)
- α
the shape parameter
- β
the scale parameter
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated