object Quantile extends Error
The Quantile
object contains methods for computing 'Finv', the "inverse"
Cumulative Distribution Functions (iCDF's) for popular sampling distributions:
StandardNormal
, StudentT
, ChiSquare
and Fisher
.
For a given CDF 'F' and probability/quantile 'p', compute 'x' such that 'F(x) = p'.
The iCDF may be thought of as giving value of 'x' for which the area under the
curve from -infinity to 'x' of the probability density function (pdf) is equal to 'p'.
- Alphabetic
- By Inheritance
- Quantile
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def check(p: Double, x_min: Double = NEGATIVE_INFINITY): (Boolean, Double)
Check whether the probability 'p' is out of range (giving NaN) or extreme, either close to 0 (giving -infinity) or 1 (giving +infinity).
Check whether the probability 'p' is out of range (giving NaN) or extreme, either close to 0 (giving -infinity) or 1 (giving +infinity). Return (true, special-value) for these cases.
- p
the p-th quantile, e.g., .95 (95%)
- x_min
the smallest value in the distribution's domain
- def chiSquareInv(p: Double, df: Int): Double
Compute the 'p'-th quantile for "ChiSquare distribution" function.
Compute the 'p'-th quantile for "ChiSquare distribution" function.
- p
the p-th quantile, e.g., .95 (95%)
- df
the degrees of freedom
- def chiSquareInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "ChiSquare distribution" function using bisection search of the CDF.
Compute the 'p'-th quantile for "ChiSquare distribution" function using bisection search of the CDF. FIX: need a faster algorithm
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameter for the degrees of freedom
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def empiricalInv(p: Double, data: Parameters): Double
Compute the 'p'-th quantile for the Empirical distribution function.
Compute the 'p'-th quantile for the Empirical distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- data
parameters as data
- def empiricalInv(p: Double, eCDF: (VectorD, VectorD)): Double
Compute the 'p'-th quantile for the Empirical distribution function.
Compute the 'p'-th quantile for the Empirical distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- eCDF
the empirical CDF
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exponentialInv(p: Double, pr: Parameters = null): Double
Compute the 'p'-th quantile for the Exponential distribution function.
Compute the 'p'-th quantile for the Exponential distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameter for the rate
- def fisherInv(p: Double, df: (Int, Int)): Double
Compute the 'p'-th quantile for "Fisher (F) distribution" function.
Compute the 'p'-th quantile for "Fisher (F) distribution" function.
- p
the p-th quantile, e.g., .95 (95%)
- df
the pair of degrees of freedom ('df1' and 'df2')
- def fisherInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "Fisher (F) distribution" function using bisection search of the CDF.
Compute the 'p'-th quantile for "Fisher (F) distribution" function using bisection search of the CDF. FIX: need a faster algorithm
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameters for the degrees of freedom (numerator, denominator)
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def normalInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for the "standard normal distribution" function.
Compute the 'p'-th quantile for the "standard normal distribution" function.
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameter for the distribution (currently not used)
- See also
home.online.no/~pjacklam/notes/invnorm/impl/sprouse/ltqnorm.c -------------------------------------------------------------------------
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def studentTInv(p: Double, df: Int): Double
Compute the 'p'-th quantile for "Student's t" distribution function.
Compute the 'p'-th quantile for "Student's t" distribution function.
- p
the p-th quantile, e.g., 95 (95%)
- df
the degrees of freedom
- def studentTInv(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "Student's t" distribution function.
Compute the 'p'-th quantile for "Student's t" distribution function.
- p
the p-th quantile, e.g., 95 (95%)
- pr
parameter for the degrees of freedom
- See also
wp.csiro.au/alanmiller/toms/cacm396.f90 -------------------------------------------------------------------------
- def studentTInv2(p: Double = .95, pr: Parameters = null): Double
Compute the 'p'-th quantile for "Student's t" distribution function.
Compute the 'p'-th quantile for "Student's t" distribution function. This algorithm is less accurate than the one above. ------------------------------------------------------------------------- It is a transliteration of the 'STUDTP' function given in Appendix C
- p
the p-th quantile, e.g., 95 (95%)
- pr
parameter for the degrees of freedom
- See also
"Principles of Discrete Event Simulation", G. S. Fishman, Wiley, 1978. -------------------------------------------------------------------------
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def uniformInv(p: Double, pr: Parameters = null): Double
Compute the 'p'-th quantile for the Uniform distribution function.
Compute the 'p'-th quantile for the Uniform distribution function.
- p
the p-th quantile, e.g., .95 (95%)
- pr
parameters for the end-points of the
Uniform
distribution
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated