Packages

c

scalation.random

RandomVecD

case class RandomVecD(dim: Int = 10, max: Double = 20.0, min: Double = 0.0, density: Double = 1.0, runLength: Int = 10, stream: Int = 0) extends VariateVec with Product with Serializable

The RandomVecD class generates a random vector of doubles. Ex: (3.0, 2.0, 0.0, 4.0, 1.0) has 'dim' = 5 and 'max' = 4.

dim

the dimension/size of the vector (number of elements)

max

generate integers in the range min (inclusive) to max (inclusive)

min

generate integers in the range min (inclusive) to max (inclusive)

density

sparsity basis = 1 - density

runLength

the maximum run length

stream

the random number stream

Linear Supertypes
Serializable, Product, Equals, VariateVec, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RandomVecD
  2. Serializable
  3. Product
  4. Equals
  5. VariateVec
  6. Error
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new RandomVecD(dim: Int = 10, max: Double = 20.0, min: Double = 0.0, density: Double = 1.0, runLength: Int = 10, stream: Int = 0)

    dim

    the dimension/size of the vector (number of elements)

    max

    generate integers in the range min (inclusive) to max (inclusive)

    min

    generate integers in the range min (inclusive) to max (inclusive)

    density

    sparsity basis = 1 - density

    runLength

    the maximum run length

    stream

    the random number stream

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. var _discrete: Boolean

    Indicates whether the distribution is discrete or continuous (default)

    Indicates whether the distribution is discrete or continuous (default)

    Attributes
    protected
    Definition Classes
    VariateVec
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
  7. val density: Double
  8. val dim: Int
  9. def discrete: Boolean

    Determine whether the distribution is discrete or continuous.

    Determine whether the distribution is discrete or continuous.

    Definition Classes
    VariateVec
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  12. def gen: VectoD

    Determine the next random double vector for the particular distribution.

    Determine the next random double vector for the particular distribution.

    Definition Classes
    RandomVecDVariateVec
  13. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  14. def igen: VectoI

    Determine the next random integer vector for the particular distribution.

    Determine the next random integer vector for the particular distribution. It is only valid for discrete random variates.

    Definition Classes
    RandomVecDVariateVec
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. val max: Double
  17. def mean: VectoD

    Compute the vector mean for the particular distribution.

    Compute the vector mean for the particular distribution.

    Definition Classes
    RandomVecDVariateVec
  18. val min: Double
  19. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  20. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  21. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  22. def pf(z: VectoD): Double

    Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.

    Compute the probability function (pf): The probability density function (pdf) for continuous RVV's or the probability mass function (pmf) for discrete RVV's.

    z

    the mass point/vector whose probability is sought

    Definition Classes
    RandomVecDVariateVec
  23. def productElementNames: Iterator[String]
    Definition Classes
    Product
  24. val r: Random

    Random number stream selected by the stream number

    Random number stream selected by the stream number

    Attributes
    protected
    Definition Classes
    VariateVec
  25. def repgen: VectoD
  26. val runLength: Int
  27. val stream: Int
  28. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  29. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  30. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  31. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from VariateVec

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped