case class RandomMatD(dim1: Int = 5, dim2: Int = 10, max: Double = 20.0, min: Double = 0.0, density: Double = 1.0, stream: Int = 0) extends VariateMat with Product with Serializable
The RandomMatD
class generates a random matrix of doubles.
- dim1
the number of rows in the matrix
- dim2
the number of columns in the matrix
- max
generate integers in the range 0 (inclusive) to max (inclusive)
- min
generate integers in the range 0 (inclusive) to max (inclusive)
- density
sparsity basis = 1 - density
- stream
the random number stream
- Alphabetic
- By Inheritance
- RandomMatD
- Serializable
- Product
- Equals
- VariateMat
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new RandomMatD(dim1: Int = 5, dim2: Int = 10, max: Double = 20.0, min: Double = 0.0, density: Double = 1.0, stream: Int = 0)
- dim1
the number of rows in the matrix
- dim2
the number of columns in the matrix
- max
generate integers in the range 0 (inclusive) to max (inclusive)
- min
generate integers in the range 0 (inclusive) to max (inclusive)
- density
sparsity basis = 1 - density
- stream
the random number stream
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- var _discrete: Boolean
Indicates whether the distribution is discrete or continuous (default)
Indicates whether the distribution is discrete or continuous (default)
- Attributes
- protected
- Definition Classes
- VariateMat
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- val density: Double
- val dim1: Int
- val dim2: Int
- def discrete: Boolean
Determine whether the distribution is discrete or continuous.
Determine whether the distribution is discrete or continuous.
- Definition Classes
- VariateMat
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- def gen: MatrixD
Determine the next random double matrix for the particular distribution.
Determine the next random double matrix for the particular distribution.
- Definition Classes
- RandomMatD → VariateMat
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def igen: MatrixI
Determine the next random integer matrix for the particular distribution.
Determine the next random integer matrix for the particular distribution. It is only valid for discrete random variates.
- Definition Classes
- RandomMatD → VariateMat
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val max: Double
- def mean: MatrixD
Compute the matrix mean for the particular distribution.
Compute the matrix mean for the particular distribution.
- Definition Classes
- RandomMatD → VariateMat
- val min: Double
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def pf(z: MatrixD): Double
Compute the probability function (pf): The probability density function (pdf) for continuous RVM's or the probability mass function (pmf) for discrete RVM's.
Compute the probability function (pf): The probability density function (pdf) for continuous RVM's or the probability mass function (pmf) for discrete RVM's.
- z
the mass point/matrix whose probability is sought
- Definition Classes
- RandomMatD → VariateMat
- def productElementNames: Iterator[String]
- Definition Classes
- Product
- val r: Random
Random number stream selected by the stream number
Random number stream selected by the stream number
- Attributes
- protected
- Definition Classes
- VariateMat
- def rlegenc: RleMatrixD
Determine the next random Rle matrix for the particular distribution.
Determine the next random Rle matrix for the particular distribution. Repetition based upon runLength is used to create column vectors.
- Definition Classes
- RandomMatD → VariateMat
- def rlegenr: RleMatrixD
Determine the next random Rle matrix for the particular distribution.
Determine the next random Rle matrix for the particular distribution. Repetition based upon runLength is used to create row vectors.
- Definition Classes
- RandomMatD → VariateMat
- val stream: Int
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated