case class HyperExponential(p: Double = .5, mu1: Double = 1, mu2: Double = 2, stream: Int = 0) extends Variate with Product with Serializable
This class generates HyperExponential
random variates (two rates).
This continuous RV models the time until an event occurs (higher coefficient
of variation than exponential distribution).
- p
the probability of first vs. second rates
- mu1
the first mean (1 / lambda1)
- mu2
the second mean (1 / lambda2)
- stream
the random number stream
- Alphabetic
- By Inheritance
- HyperExponential
- Serializable
- Product
- Equals
- Variate
- Error
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new HyperExponential(p: Double = .5, mu1: Double = 1, mu2: Double = 2, stream: Int = 0)
- p
the probability of first vs. second rates
- mu1
the first mean (1 / lambda1)
- mu2
the second mean (1 / lambda2)
- stream
the random number stream
Value Members
- def discrete: Boolean
Determine whether the distribution is discrete or continuous.
Determine whether the distribution is discrete or continuous.
- Definition Classes
- Variate
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- def gen: Double
Determine the next random number for the particular distribution.
Determine the next random number for the particular distribution.
- Definition Classes
- HyperExponential → Variate
- def gen1(z: Double): Double
Determine the next random number for the particular distribution.
Determine the next random number for the particular distribution. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- HyperExponential → Variate
- def igen: Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates.
- Definition Classes
- Variate
- def igen1(z: Double): Int
Determine the next random integer for the particular distribution.
Determine the next random integer for the particular distribution. It is only valid for discrete random variates. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- Variate
- val mean: Double
Precompute the mean for the particular distribution.
Precompute the mean for the particular distribution.
- Definition Classes
- HyperExponential → Variate
- val mu1: Double
- val mu2: Double
- val p: Double
- def pf(z: Double): Double
Compute the probability function (pf): Either (a) the probability density function (pdf) for continuous RV's or (b) the probability mass function (pmf) for discrete RV's.
Compute the probability function (pf): Either (a) the probability density function (pdf) for continuous RV's or (b) the probability mass function (pmf) for discrete RV's.
- z
the mass point whose probability density/mass is sought
- Definition Classes
- HyperExponential → Variate
- def pmf(k: Int = 0): Array[Double]
Return the entire probability mass function (pmf) for finite discrete RV's.
Return the entire probability mass function (pmf) for finite discrete RV's.
- k
number of objects of the first type
- Definition Classes
- Variate
- def productElementNames: Iterator[String]
- Definition Classes
- Product
- def sgen: String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method.
- Definition Classes
- Variate
- def sgen1(z: Double): String
Determine the next random string for the particular distribution.
Determine the next random string for the particular distribution. For better random strings, overide this method. This version allows one parameter.
- z
the limit parameter
- Definition Classes
- Variate
- val stream: Int