Packages

class Perceptron extends PredictorMat

The Perceptron class supports single-output, 2-layer (input and output) Neural-Networks. Although perceptrons are typically used for classification, this class is used for prediction. Given several input vectors and output values (training data), fit the weights/parameters 'b' connecting the layers, so that for a new input vector 'z', the net can predict the output value, i.e.,

z = f (b dot z)

The parameter vector 'b' (w) gives the weights between input and output layers. Note, 'b0' is treated as the bias, so 'x0' must be 1.0.

Linear Supertypes
PredictorMat, Error, Predictor, Fit, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Perceptron
  2. PredictorMat
  3. Error
  4. Predictor
  5. Fit
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Perceptron(x: MatriD, y: VectoD, fname_: Strings = null, hparam: HyperParameter = Optimizer.hp, f1: AFF = f_sigmoid)

    x

    the input m-by-n matrix (training data consisting of m input vectors)

    y

    the output m-vector (training data consisting of m output values)

    fname_

    the feature/variable names

    hparam

    the hyper-parameters

    f1

    the activation function family for layers 1->2 (input to output)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. val b: VectoD
    Attributes
    protected
    Definition Classes
    Predictor
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. def crossVal(k: Int = 10, rando: Boolean = true): Unit

    Perform 'k'-fold cross-validation.

    Perform 'k'-fold cross-validation.

    k

    the number of folds

    rando

    whether to use randomized cross-validation

    Definition Classes
    PerceptronPredictorMat
  8. def crossValidate(algor: (MatriD, VectoD) ⇒ PredictorMat, k: Int = 10, rando: Boolean = true): Array[Statistic]
    Definition Classes
    PredictorMat
  9. def diagnose(e: VectoD, w: VectoD = null, yp: VectoD = null, y_: VectoD = y): Unit

    Given the error/residual vector, compute the quality of fit measures.

    Given the error/residual vector, compute the quality of fit measures.

    e

    the corresponding m-dimensional error vector (y - yp)

    w

    the weights on the instances

    yp

    the predicted response vector (x * b)

    Definition Classes
    Fit
  10. val e: VectoD
    Attributes
    protected
    Definition Classes
    Predictor
  11. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  13. def eval(): Unit

    Evaluate the quality of fit for the current parameter/weight vector 'b'.

    Evaluate the quality of fit for the current parameter/weight vector 'b'.

    Definition Classes
    PerceptronPredictorMatPredictor
  14. def eval(xx: MatriD, yy: VectoD): Unit

    Compute the error and useful diagnostics for the test dataset.

    Compute the error and useful diagnostics for the test dataset.

    xx

    the test data matrix

    yy

    the test response vector

    Definition Classes
    PredictorMatPredictor
  15. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  16. def fit: VectoD

    Return the quality of fit including 'rSq', 'sst', 'sse', 'mse0', rmse', 'mae', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'.

    Return the quality of fit including 'rSq', 'sst', 'sse', 'mse0', rmse', 'mae', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Note that 'rSq' is the number 5 measure. Override to add more quality of fit measures.

    Definition Classes
    Fit
  17. def fitLabel: Seq[String]

    Return the labels for the quality of fit measures.

    Return the labels for the quality of fit measures. Override to add more quality of fit measures.

    Definition Classes
    Fit
  18. def fitMap: Map[String, String]

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered).

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered). Override to add more quality of fit measures.

    Definition Classes
    Fit
  19. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  20. var fname: Strings
    Attributes
    protected
    Definition Classes
    PredictorMat
  21. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  22. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  23. def hparameter: HyperParameter

    Return the hyper-parameters.

    Return the hyper-parameters.

    Definition Classes
    PredictorMat
  24. val index_rSq: Int
    Definition Classes
    Fit
  25. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  26. val k: Int
    Attributes
    protected
    Definition Classes
    PredictorMat
  27. val m: Int
    Attributes
    protected
    Definition Classes
    PredictorMat
  28. def mse_: Double

    Return the mean of squares for error (sse / df._2).

    Return the mean of squares for error (sse / df._2). Must call diagnose first.

    Definition Classes
    Fit
  29. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  30. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  31. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  32. def parameter: VectoD

    Return the vector of parameter/coefficient values.

    Return the vector of parameter/coefficient values.

    Definition Classes
    Predictor
  33. def predict(z: MatriD = x): VectoD

    Given a new input matrix 'z', predict the output/response value 'f(z)'.

    Given a new input matrix 'z', predict the output/response value 'f(z)'.

    z

    the new input matrix

    Definition Classes
    PerceptronPredictorMat
  34. def predict(z: VectoD): Double

    Given a new input vector 'z', predict the output/response value 'f(z)'.

    Given a new input vector 'z', predict the output/response value 'f(z)'.

    z

    the new input vector

    Definition Classes
    PerceptronPredictorMatPredictor
  35. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  36. def reset(eta_: Double): Unit

    Reset the learning rate 'eta'.

  37. def resetDF(df_update: (Double, Double)): Unit

    Reset the degrees of freedom to the new updated values.

    Reset the degrees of freedom to the new updated values. For some models, the degrees of freedom is not known until after the model is built.

    df_update

    the updated degrees of freedom

    Definition Classes
    Fit
  38. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  39. def setWeights(w0: VectoD): Unit

    Set the initial parameter/weight vector 'b' manually before training.

    Set the initial parameter/weight vector 'b' manually before training. This is mainly for testing purposes.

    w0

    the initial weights for b

  40. def sumCoeff(b: VectoD, stdErr: VectoD = null): String

    Produce the summary report portion for the cofficients.

    Produce the summary report portion for the cofficients.

    b

    the parameters/coefficients for the model

    Definition Classes
    Fit
  41. def summary(): String

    Compute and return summary diagostics for the regression model.

    Compute and return summary diagostics for the regression model.

    Definition Classes
    PredictorMat
  42. def summary(b: VectoD, stdErr: VectoD = null, show: Boolean = false): String

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    b

    the parameters/coefficients for the model

    show

    flag indicating whether to print the summary

    Definition Classes
    Fit
  43. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  44. def toString(): String
    Definition Classes
    AnyRef → Any
  45. def train(yy: VectoD = y): Perceptron

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'.

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'. Minimize the error in the prediction by adjusting the weight vector 'b'. Iterate over several epochs, where each epoch divides the training set into 'nbat' batches. Each batch is used to update the weights.

    yy

    the output vector

    Definition Classes
    PerceptronPredictorMatPredictor
  46. def train(): PredictorMat

    Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.

    Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.

    Definition Classes
    PredictorMat
  47. def train0(yy: VectoD = y): Perceptron

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'.

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'. Minimize the error in the prediction by adjusting the weight vector 'b'. The error 'e' is simply the difference between the target value 'yy' and the predicted value 'yp'. Minimize the dot product of error with itself using gradient-descent (move in the opposite direction of the gradient). Iterate over several epochs (no batching).

    yy

    the output vector

  48. def train2(yy: VectoD = y): Perceptron

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'.

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'. Minimize the error in the prediction by adjusting the weight vector 'b'. Iterate over several epochs, where each epoch divides the training set into 'nbat' batches. Each batch is used to update the weights. This version preforms an interval search for the best 'eta' value.

    yy

    the output vector

    Definition Classes
    PerceptronPredictorMat
  49. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  50. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  51. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  52. val x: MatriD
    Attributes
    protected
    Definition Classes
    PredictorMat
  53. val y: VectoD
    Attributes
    protected
    Definition Classes
    PredictorMat

Inherited from PredictorMat

Inherited from Error

Inherited from Predictor

Inherited from Fit

Inherited from AnyRef

Inherited from Any

Ungrouped