class RecurrentNeuralNetLayer extends AnyRef
The RecurrentNeuralNetLayer
is a 3-layer where x denotes the input,
'y 'denotes the output and 's' is the intermediate/hidden value.
We have 'St = Activate (U dot x(t) + W dot x(t-1))' and
'y(t) = softmax(V dot St)'.
- Alphabetic
- By Inheritance
- RecurrentNeuralNetLayer
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
- new RecurrentNeuralNetLayer()
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- var add: VectoD
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
backward(x: VectoD, prev_s: VectoD, u: MatriD, w: MatriD, v: MatriD, diff_s: VectoD, dmulv: VectoD): (VectoD, MatriD, MatriD, MatriD)
Calculate the derivate regarding to prev_s , U, W, V by backward of each unit
Calculate the derivate regarding to prev_s , U, W, V by backward of each unit
- x
the input data
- prev_s
record the previous hidden layer value
- u
parameter for input x
- w
parameter for hidden layer z
- v
parameter for output
- diff_s
diff_s = ds(t+1)/ ds (t)
- dmulv
dl/dmulv where l is the loss, mulv = V dot s
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
forward(x: VectoD, prev_s: VectoD, u: MatriD, w: MatriD, v: MatriD): Unit
Forward the x into the RecurrentNeuralNet layer.
Forward the x into the RecurrentNeuralNet layer. We have St = Activate (U dot x(t) + W dot x(t-1)) y(t) = softmax(V dot St)
- x
the input data
- prev_s
record the previous hidden layer value
- u
parameter for input x
- w
parameter for hidden layer z
- v
parameter for output
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- var mulu: VectoD
- var mulv: VectoD
- var mulw: VectoD
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- var s: VectoD
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )