Packages

abstract class PredictorMat extends Fit with Predictor with Error

The PredictorMat abstract class supports multiple predictor analytics. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in for example the regression equation

y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e

Note, "protected val" arguments required by ResponseSurface.

Linear Supertypes
Error, Predictor, Fit, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PredictorMat
  2. Error
  3. Predictor
  4. Fit
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PredictorMat(x: MatriD, y: VectoD, fname: Strings = null, hparam: HyperParameter = null)

    x

    the input/data m-by-n matrix (augment with a first column of ones to include intercept in model)

    y

    the response m-vector

    fname

    the feature/variable names for the predictors

    hparam

    the hyperparameters for the model

Abstract Value Members

  1. abstract def crossVal(k: Int = 10, rando: Boolean = true): Unit

    The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method.

    The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method. The 'algor' parameter may be specified as a lambda function to create the prediction algorithm.

    k

    the number of crosses and cross-validations (defaults to 10x).

    rando

    flag for using randomized cross-validation

  2. abstract def train(yy: VectoD): PredictorMat

    Given a set of data vectors 'x's and their corresponding responses 'yy's, train the prediction function 'yy = f(x)' by fitting its parameters.

    Given a set of data vectors 'x's and their corresponding responses 'yy's, train the prediction function 'yy = f(x)' by fitting its parameters. The 'x' values must be provided by the implementing class.

    yy

    the response vector

    Definition Classes
    PredictorMatPredictor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. val b: VectoD
    Attributes
    protected
    Definition Classes
    Predictor
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. def crossValidate(algor: (MatriD, VectoD) ⇒ PredictorMat, k: Int = 10, rando: Boolean = true): Array[Statistic]
  8. def diagnose(e: VectoD, w: VectoD = null, yp: VectoD = null, y_: VectoD = y): Unit

    Given the error/residual vector, compute the quality of fit measures.

    Given the error/residual vector, compute the quality of fit measures.

    e

    the corresponding m-dimensional error vector (y - yp)

    w

    the weights on the instances

    yp

    the predicted response vector (x * b)

    Definition Classes
    Fit
  9. val e: VectoD
    Attributes
    protected
    Definition Classes
    Predictor
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  12. def eval(xx: MatriD, yy: VectoD): Unit

    Compute the error and useful diagnostics for the test dataset.

    Compute the error and useful diagnostics for the test dataset.

    xx

    the test data matrix

    yy

    the test response vector

    Definition Classes
    PredictorMatPredictor
  13. def eval(): Unit

    Compute the error and useful diagnostics for the entire dataset.

    Compute the error and useful diagnostics for the entire dataset.

    Definition Classes
    PredictorMatPredictor
  14. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def fit: VectoD

    Return the quality of fit including 'rSq', 'sst', 'sse', 'mse0', rmse', 'mae', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'.

    Return the quality of fit including 'rSq', 'sst', 'sse', 'mse0', rmse', 'mae', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Note that 'rSq' is the number 5 measure. Override to add more quality of fit measures.

    Definition Classes
    Fit
  16. def fitLabel: Seq[String]

    Return the labels for the quality of fit measures.

    Return the labels for the quality of fit measures. Override to add more quality of fit measures.

    Definition Classes
    Fit
  17. def fitMap: Map[String, String]

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered).

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered). Override to add more quality of fit measures.

    Definition Classes
    Fit
  18. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  19. var fname: Strings
    Attributes
    protected
  20. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  21. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  22. def hparameter: HyperParameter

    Return the hyper-parameters.

  23. val index_rSq: Int
    Definition Classes
    Fit
  24. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  25. val k: Int
    Attributes
    protected
  26. val m: Int
    Attributes
    protected
  27. def mse_: Double

    Return the mean of squares for error (sse / df._2).

    Return the mean of squares for error (sse / df._2). Must call diagnose first.

    Definition Classes
    Fit
  28. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  29. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  30. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  31. def parameter: VectoD

    Return the vector of parameter/coefficient values.

    Return the vector of parameter/coefficient values.

    Definition Classes
    Predictor
  32. def predict(z: MatriD = x): VectoD

    Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.

    Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.

    z

    the new matrix to predict

  33. def predict(z: VectoD): Double

    Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', e.g., '(b_0, b_1, b_2) dot (1, z_1, z_2)'.

    Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', e.g., '(b_0, b_1, b_2) dot (1, z_1, z_2)'.

    z

    the new vector to predict

    Definition Classes
    PredictorMatPredictor
  34. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  35. def resetDF(df_update: (Double, Double)): Unit

    Reset the degrees of freedom to the new updated values.

    Reset the degrees of freedom to the new updated values. For some models, the degrees of freedom is not known until after the model is built.

    df_update

    the updated degrees of freedom

    Definition Classes
    Fit
  36. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  37. def sumCoeff(b: VectoD, stdErr: VectoD = null): String

    Produce the summary report portion for the cofficients.

    Produce the summary report portion for the cofficients.

    b

    the parameters/coefficients for the model

    Definition Classes
    Fit
  38. def summary(): String

    Compute and return summary diagostics for the regression model.

  39. def summary(b: VectoD, stdErr: VectoD = null, show: Boolean = false): String

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    b

    the parameters/coefficients for the model

    show

    flag indicating whether to print the summary

    Definition Classes
    Fit
  40. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  41. def toString(): String
    Definition Classes
    AnyRef → Any
  42. def train(): PredictorMat

    Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.

  43. def train2(yy: VectoD = y): PredictorMat
  44. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  45. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  47. val x: MatriD
    Attributes
    protected
  48. val y: VectoD
    Attributes
    protected

Inherited from Error

Inherited from Predictor

Inherited from Fit

Inherited from AnyRef

Inherited from Any

Ungrouped