class ELM_3L1 extends PredictorMat
The ELM_3L1
class supports single-output, 3-layer (input, hidden and output)
Extreme-Learning Machines. It can be used for both classification and prediction,
depending on the activation functions used. Given several input vectors and output
vectors (training data), fit the parameters 'a' and 'b' connecting the layers,
so that for a new input vector 'v', the net can predict the output value, i.e.,
yp = f1 (b * f0 (a * v))
where 'f0' and 'f1' are the activation functions and the parameter 'a' and 'b'
are the parameters between input-hidden and hidden-output layers.
Unlike NeuralNet_2L
which adds input 'x0 = 1' to account for the intercept/bias,
ELM_3L1
explicitly adds bias.
Note: only uses 'f_id' implicitly, use ELM_3L
for other options for 'f1'.
- Alphabetic
- By Inheritance
- ELM_3L1
- PredictorMat
- Predictor
- Model
- Fit
- Error
- QoF
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new ELM_3L1(x: MatriD, y: VectoD, nz: Int = -1, fname_: Strings = null, hparam: HyperParameter = null, f0: AFF = f_tanh, itran: FunctionV_2V = null)
- x
the m-by-n input matrix (training data consisting of m input vectors)
- y
the m output vector (training data consisting of m output scalars)
- nz
the number of nodes in hidden layer (-1 => use default formula)
- fname_
the feature/variable names (if null, use x_j's)
- hparam
the hyper-parameters for the model/network
- f0
the activation function family for layers 1->2 (input to hidden)
- itran
the inverse transformation function returns responses to original scale
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def analyze(x_: MatriD = x, y_: VectoD = y, x_e: MatriD = x, y_e: VectoD = y): PredictorMat
Analyze a dataset using this model using ordinary training with the 'train' method.
Analyze a dataset using this model using ordinary training with the 'train' method.
- x_
the training/full data/input matrix
- y_
the training/full response/output vector
- x_e
the test/full data/input matrix
- y_e
the test/full response/output vector
- Definition Classes
- PredictorMat → Predictor
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- var b: VectoD
- Attributes
- protected
- Definition Classes
- PredictorMat
- def backwardElim(cols: Set[Int], index_q: Int = index_rSqBar, first: Int = 1): (Int, PredictorMat)
Perform backward elimination to find the least predictive variable to remove from the existing model, returning the variable to eliminate, the new parameter vector and the new Quality of Fit (QoF).
Perform backward elimination to find the least predictive variable to remove from the existing model, returning the variable to eliminate, the new parameter vector and the new Quality of Fit (QoF). May be called repeatedly.
- cols
the columns of matrix x currently included in the existing model
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- first
first variable to consider for elimination (default (1) assume intercept x_0 will be in any model)
- Definition Classes
- PredictorMat
- See also
Fit
for index of QoF measures.
- def backwardElimAll(index_q: Int = index_rSqBar, first: Int = 1, cross: Boolean = true): (Set[Int], MatriD)
Perform backward elimination to find the least predictive variables to remove from the full model, returning the variables left and the new Quality of Fit (QoF) measures for all steps.
Perform backward elimination to find the least predictive variables to remove from the full model, returning the variables left and the new Quality of Fit (QoF) measures for all steps.
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- first
first variable to consider for elimination
- cross
whether to include the cross-validation QoF measure
- Definition Classes
- PredictorMat
- See also
Fit
for index of QoF measures.
- def buildModel(x_cols: MatriD): ELM_3L1
Build a sub-model that is restricted to the given columns of the data matrix.
Build a sub-model that is restricted to the given columns of the data matrix.
- x_cols
the columns that the new model is restricted to
- Definition Classes
- ELM_3L1 → PredictorMat
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def compute_df_m(nz_: Int): Int
Compute the degrees of freedom for the model (based on 'n, nz_, ny = 1').
Compute the degrees of freedom for the model (based on 'n, nz_, ny = 1'). Rough extimate based on total number of parameters - 1.
- nz_
the number of nodes in the hidden layer
- def corrMatrix(xx: MatriD = x): MatriD
Return the correlation matrix for the columns in data matrix 'xx'.
Return the correlation matrix for the columns in data matrix 'xx'.
- xx
the data matrix shose correlation matrix is sought
- Definition Classes
- PredictorMat → Predictor
- def crossValidate(k: Int = 10, rando: Boolean = true): Array[Statistic]
- Definition Classes
- PredictorMat
- val df_m: Int
- def diagnose(e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym_: Double = noDouble): Unit
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses.
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses. For some models the instances may be weighted.
- e
the m-dimensional error/residual vector (yy - yp)
- yy
the actual response/output vector to use (test/full)
- yp
the predicted response/output vector (test/full)
- w
the weights on the instances (defaults to null)
- ym_
the mean of the actual response/output vector to use (training/full)
- var e: VectoD
- Attributes
- protected
- Definition Classes
- PredictorMat
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def eval(ym: Double, y_e: VectoD, yp: VectoD): PredictorMat
Compute the error (difference between actual and predicted) and useful diagnostics for the test dataset.
Compute the error (difference between actual and predicted) and useful diagnostics for the test dataset. Requires predicted responses to be passed in.
- ym
the training/full mean actual response/output vector
- y_e
the test/full actual response/output vector
- yp
the test/full predicted response/output vector
- Definition Classes
- PredictorMat
- def eval(x_e: MatriD = x, y_e: VectoD = y): PredictorMat
Compute the error (difference between actual and predicted) and useful diagnostics for the test dataset.
Compute the error (difference between actual and predicted) and useful diagnostics for the test dataset.
- x_e
the test/full data/input matrix (defualts to full x)
- y_e
the test/full response/output vector (defualts to full y)
- Definition Classes
- PredictorMat → Model
- def f_(z: Double): String
Format a double value.
- def fit: VectoD
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method.
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Override to add more quality of fit measures.
- def fitLabel: Seq[String]
Return the labels for the Quality of Fit (QoF) measures.
- def fitMap: Map[String, String]
Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).- Definition Classes
- QoF
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- var fname: Strings
- Attributes
- protected
- Definition Classes
- PredictorMat
- def forwardSel(cols: Set[Int], index_q: Int = index_rSqBar): (Int, PredictorMat)
Perform forward selection to find the most predictive variable to add the existing model, returning the variable to add and the new model.
Perform forward selection to find the most predictive variable to add the existing model, returning the variable to add and the new model. May be called repeatedly.
- cols
the columns of matrix x currently included in the existing model
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- Definition Classes
- PredictorMat → Predictor
- See also
Fit
for index of QoF measures.
- def forwardSelAll(index_q: Int = index_rSqBar, cross: Boolean = true): (Set[Int], MatriD)
Perform forward selection to find the most predictive variables to have in the model, returning the variables added and the new Quality of Fit (QoF) measures for all steps.
Perform forward selection to find the most predictive variables to have in the model, returning the variables added and the new Quality of Fit (QoF) measures for all steps.
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- cross
whether to include the cross-validation QoF measure
- Definition Classes
- PredictorMat
- See also
Fit
for index of QoF measures.
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def getX: MatriD
Return the 'used' data matrix 'x'.
Return the 'used' data matrix 'x'. Mainly for derived classes where 'x' is expanded from the given columns in 'x_', e.g.,
QuadRegression
add squared columns.- Definition Classes
- PredictorMat → Predictor
- def getY: VectoD
Return the 'used' response vector 'y'.
Return the 'used' response vector 'y'. Mainly for derived classes where 'y' is transformed, e.g.,
TranRegression
,Regression4TS
.- Definition Classes
- PredictorMat → Predictor
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def help: String
Return the help string that describes the Quality of Fit (QoF) measures provided by the
Fit
class. - def hparameter: HyperParameter
Return the hyper-parameters.
Return the hyper-parameters.
- Definition Classes
- PredictorMat → Model
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val itran: FunctionV_2V
- val k: Int
- Attributes
- protected
- Definition Classes
- PredictorMat
- def ll(ms: Double = mse0, s2: Double = sig2e, m2: Int = m): Double
The log-likelihood function times -2.
The log-likelihood function times -2. Override as needed.
- ms
raw Mean Squared Error
- s2
MLE estimate of the population variance of the residuals
- Definition Classes
- Fit
- See also
www.stat.cmu.edu/~cshalizi/mreg/15/lectures/06/lecture-06.pdf
www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811 Section 2.11
- val m: Int
- Attributes
- protected
- Definition Classes
- PredictorMat
- val modelConcept: URI
An optional reference to an ontological concept
An optional reference to an ontological concept
- Definition Classes
- Model
- def modelName: String
An optional name for the model (or modeling technique)
An optional name for the model (or modeling technique)
- Definition Classes
- Model
- def mse_: Double
Return the mean of squares for error (sse / df._2).
Return the mean of squares for error (sse / df._2). Must call diagnose first.
- Definition Classes
- Fit
- val n: Int
- Attributes
- protected
- Definition Classes
- PredictorMat
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def parameter: VectoD
Return the vector of parameter/coefficient values.
Return the vector of parameter/coefficient values.
- Definition Classes
- PredictorMat → Model
- def parameters: VectoD
Return the parameters 'b'.
Return the parameters 'b'. Since the 'a' weights are fixed, only return 'b'.
- def predict(v: MatriD = x): VectoD
Given an input matrix 'v', predict the output/response matrix 'f(v)'.
Given an input matrix 'v', predict the output/response matrix 'f(v)'.
- v
the input matrix
- Definition Classes
- ELM_3L1 → PredictorMat → Predictor
- def predict(v: VectoD): Double
Given a new input vector 'v', predict the output/response vector 'f(v)'.
Given a new input vector 'v', predict the output/response vector 'f(v)'.
- v
the new input vector
- Definition Classes
- ELM_3L1 → PredictorMat → Predictor
- def predict(z: VectoI): Double
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
- z
the vector to use for prediction
- Definition Classes
- Predictor
- def report: String
Return a basic report on the trained model.
Return a basic report on the trained model.
- Definition Classes
- PredictorMat → Model
- See also
'summary' method for more details
- def resetDF(df_update: PairD): Unit
Reset the degrees of freedom to the new updated values.
Reset the degrees of freedom to the new updated values. For some models, the degrees of freedom is not known until after the model is built.
- df_update
the updated degrees of freedom (model, error)
- Definition Classes
- Fit
- def residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- PredictorMat → Predictor
- def reverse(a: MatriD): MatriD
Return a matrix that is in reverse row order of the given matrix 'a'.
Return a matrix that is in reverse row order of the given matrix 'a'.
- a
the given matrix
- Definition Classes
- PredictorMat
- var sig2e: Double
- Attributes
- protected
- Definition Classes
- Fit
- def stepRegressionAll(index_q: Int = index_rSqBar, cross: Boolean = true): (Set[Int], MatriD)
Perform stepwise regression to find the most predictive variables to have in the model, returning the variables left and the new Quality of Fit (QoF) measures for all steps.
Perform stepwise regression to find the most predictive variables to have in the model, returning the variables left and the new Quality of Fit (QoF) measures for all steps. At each step it calls 'forwardSel' and 'backwardElim' and takes the best of the two actions. Stops when neither action yields improvement.
- index_q
index of Quality of Fit (QoF) to use for comparing quality
- cross
whether to include the cross-validation QoF measure
- Definition Classes
- PredictorMat
- See also
Fit
for index of QoF measures.
- def summary: String
Compute and return summary diagostics for the regression model.
Compute and return summary diagostics for the regression model.
- Definition Classes
- PredictorMat
- def summary(b: VectoD, stdErr: VectoD, vf: VectoD, show: Boolean = false): String
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
- b
the parameters/coefficients for the model
- vf
the Variance Inflation Factors (VIFs)
- show
flag indicating whether to print the summary
- Definition Classes
- Fit
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def test(modelName: String, doPlot: Boolean = true): Unit
Test the model on the full dataset (i.e., train and evaluate on full dataset).
Test the model on the full dataset (i.e., train and evaluate on full dataset).
- modelName
the name of the model being tested
- doPlot
whether to plot the actual vs. predicted response
- Definition Classes
- Predictor
- def toString(): String
- Definition Classes
- AnyRef → Any
- def train(x_: MatriD = x, y_: VectoD = y): ELM_3L1
Given training data 'x_' and 'y_', with parameters 'a' fixed, fit parameters 'b'.
Given training data 'x_' and 'y_', with parameters 'a' fixed, fit parameters 'b'. Use matrix factorization in
Regression
to find optimal values for the parameters/weights 'b'.- x_
the training/full data/input matrix
- y_
the training/full response/output vector
- Definition Classes
- ELM_3L1 → PredictorMat → Model
- def train2(x_: MatriD = x, y_: VectoD = y): PredictorMat
Train a predictive model 'y_ = f(x_) + e' where 'x_' is the data/input matrix and 'y_' is the response/output vector.
Train a predictive model 'y_ = f(x_) + e' where 'x_' is the data/input matrix and 'y_' is the response/output vector. These arguments default to the full dataset 'x' and 'y', but may be restricted to a training dataset. Training involves estimating the model parameters 'b'. The 'train2' method should work like the 'train' method, but should also optimize hyper-parameters (e.g., shrinkage or learning rate). Only implementing classes needing this capability should implement this method.
- x_
the training/full data/input matrix (defaults to full x)
- y_
the training/full response/output vector (defaults to full y)
- Definition Classes
- PredictorMat
- def vif(skip: Int = 1): VectoD
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'x_j' against the rest of the variables.
Compute the Variance Inflation Factor 'VIF' for each variable to test for multi-collinearity by regressing 'x_j' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'x_j' can be predicted from the other variables, so 'x_j' may be a candidate for removal from the model. Note: override this method to use a superior regression technique.
- skip
the number of columns of x at the beginning to skip in computing VIF
- Definition Classes
- PredictorMat
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- val x: MatriD
- Attributes
- protected
- Definition Classes
- PredictorMat
- val y: VectoD
- Attributes
- protected
- Definition Classes
- PredictorMat
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated