trait Imputation extends AnyRef
The Imputation
trait specifies an imputation operation called 'impute' to be defined
by the objects implementing it, i.e.,
ImputeRegression
- impute missing values using SimpleRegression
ImputeForward
- impute missing values using previous values and slopes
ImputeBackward
- impute missing values using subsequent values and slopes
ImputeMean
- impute missing values usind the filtered mean
ImputeNormal
- impute missing values using the median of Normal random variates
ImputeMovingAvg
- impute missing values using the moving average
ImputeNormalWin
- impute missing values using the median of Normal random variates for a window
- Alphabetic
- By Inheritance
- Imputation
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Abstract Value Members
- abstract def imputeAt(x: VectoD, i: Int): Double
Impute a value for vector 'x' at index 'i'.
Impute a value for vector 'x' at index 'i'. Does not modify the vector.
- x
the vector with missing values
- i
the index position for which to impute a value
Concrete Value Members
- def impute(x: MatriD): MatriD
Replace all missing values in matrix 'x' with imputed values.
Replace all missing values in matrix 'x' with imputed values. Will change the values in matrix 'x'. Make a copy to preserve values 'x.copy'.
- x
the matrix with missing values
- def impute(x: VectoD, i: Int = 0): (Int, Double)
Impute a value for the first missing value in vector 'x' from index 'i'.
Impute a value for the first missing value in vector 'x' from index 'i'. The type (Int, Double) returns (vector index for imputation, imputed value). Does not modify the vector.
- x
the vector with missing values
- i
the starting index to look for missing values
- def imputeAll(x: VectoD): VectoD
Replace all missing values in vector 'x' with imputed values.
Replace all missing values in vector 'x' with imputed values. Will change the values in vector 'x'. Make a copy to preserve values 'x.copy'.
- x
the vector with missing values
- def imputeCol(c: Vec, i: Int = 0): (Int, Any)
Impute a value for the first missing value in column 'c' from index 'i'.
Impute a value for the first missing value in column 'c' from index 'i'. The type (Int, Double) returns (vector index for imputation, imputed value). Does not modify the column.
- c
the column with missing values
- i
the starting index to look for missing values
- def setDist(dist_: Int): Unit
Set the distance 'dist' to the new value 'dist_'.
Set the distance 'dist' to the new value 'dist_'.
- dist_
the new value for the distance
- def setMissVal(missVal_: Double): Unit
Set the missing value 'missVal' to the new missing value indicator 'missVal_'.
Set the missing value 'missVal' to the new missing value indicator 'missVal_'.
- missVal_
the new missing value indicator