Packages

trait Imputation extends AnyRef

The Imputation trait specifies an imputation operation called 'impute' to be defined by the objects implementing it, i.e., ImputeRegression - impute missing values using SimpleRegression ImputeForward - impute missing values using previous values and slopes ImputeBackward - impute missing values using subsequent values and slopes ImputeMean - impute missing values usind the filtered mean ImputeNormal - impute missing values using the median of Normal random variates ImputeMovingAvg - impute missing values using the moving average ImputeNormalWin - impute missing values using the median of Normal random variates for a window

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Imputation
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Abstract Value Members

  1. abstract def imputeAt(x: VectoD, i: Int): Double

    Impute a value for vector 'x' at index 'i'.

    Impute a value for vector 'x' at index 'i'. Does not modify the vector.

    x

    the vector with missing values

    i

    the index position for which to impute a value

Concrete Value Members

  1. def impute(x: MatriD): MatriD

    Replace all missing values in matrix 'x' with imputed values.

    Replace all missing values in matrix 'x' with imputed values. Will change the values in matrix 'x'. Make a copy to preserve values 'x.copy'.

    x

    the matrix with missing values

  2. def impute(x: VectoD, i: Int = 0): (Int, Double)

    Impute a value for the first missing value in vector 'x' from index 'i'.

    Impute a value for the first missing value in vector 'x' from index 'i'. The type (Int, Double) returns (vector index for imputation, imputed value). Does not modify the vector.

    x

    the vector with missing values

    i

    the starting index to look for missing values

  3. def imputeAll(x: VectoD): VectoD

    Replace all missing values in vector 'x' with imputed values.

    Replace all missing values in vector 'x' with imputed values. Will change the values in vector 'x'. Make a copy to preserve values 'x.copy'.

    x

    the vector with missing values

  4. def imputeCol(c: Vec, i: Int = 0): (Int, Any)

    Impute a value for the first missing value in column 'c' from index 'i'.

    Impute a value for the first missing value in column 'c' from index 'i'. The type (Int, Double) returns (vector index for imputation, imputed value). Does not modify the column.

    c

    the column with missing values

    i

    the starting index to look for missing values

  5. def setDist(dist_: Int): Unit

    Set the distance 'dist' to the new value 'dist_'.

    Set the distance 'dist' to the new value 'dist_'.

    dist_

    the new value for the distance

  6. def setMissVal(missVal_: Double): Unit

    Set the missing value 'missVal' to the new missing value indicator 'missVal_'.

    Set the missing value 'missVal' to the new missing value indicator 'missVal_'.

    missVal_

    the new missing value indicator