class NullModel extends Fit with Predictor with NoFeatureSelection
The NullModel
class implements the simplest type of predictive modeling technique
that just predicts the response 'y' to be the mean.
Fit the parameter vector 'b' in the null regression equation
y = b dot x + e = b0 + e
where 'e' represents the residual/error vector (the part not explained by the model).
- Alphabetic
- By Inheritance
- NullModel
- NoFeatureSelection
- Predictor
- Model
- Fit
- Error
- QoF
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new NullModel(y: VectoD)
- y
the response/output vector
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def analyze(x_: MatriD = null, y_: VectoD = y, x_e: MatriD = null, y_e: VectoD = y): NullModel
Analyze a dataset using this model using ordinary training with the 'train' method.
Analyze a dataset using this model using ordinary training with the 'train' method.
- x_
the data/input matrix (ignored by
NullModel
)- y_
the response/output vector (training/full)
- x_e
the data/input matrix (ignored by
NullModel
)- y_e
the response/output vector (testing/full)
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- def corrMatrix(xx: MatriD): MatriD
Return the correlation matrix for the columns in data matrix 'xx'.
Return the correlation matrix for the columns in data matrix 'xx'.
- xx
the data matrix shose correlation matrix is sought
- Definition Classes
- Predictor
- def diagnose(e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym_: Double = noDouble): Unit
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses.
Diagnose the health of the model by computing the Quality of Fit (QoF) measures, from the error/residual vector and the predicted & actual responses. For some models the instances may be weighted.
- e
the m-dimensional error/residual vector (yy - yp)
- yy
the actual response/output vector to use (test/full)
- yp
the predicted response/output vector (test/full)
- w
the weights on the instances (defaults to null)
- ym_
the mean of the actual response/output vector to use (training/full)
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def eval(x_null: MatriD, y_e: VectoD): NullModel
Compute the error vector 'e' (difference between actual and predicted) and useful diagnostics.
- def f_(z: Double): String
Format a double value.
- def fit: VectoD
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method.
Return the Quality of Fit (QoF) measures corresponding to the labels given above in the 'fitLabel' method. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Override to add more quality of fit measures.
- def fitLabel: Seq[String]
Return the labels for the Quality of Fit (QoF) measures.
- def fitMap: Map[String, String]
Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinkedHashMap
makes it ordered).- Definition Classes
- QoF
- final def flaw(method: String, message: String): Unit
- Definition Classes
- Error
- def forwardSel(cols: Set[Int], index_q: Int): (Int, Predictor)
- Definition Classes
- NoFeatureSelection
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def getX: MatriD
Return the 'used' data matrix 'x' (for this model it's null).
- def getY: VectoD
Return the 'used' response vector 'y'.
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def help: String
Return the help string that describes the Quality of Fit (QoF) measures provided by the
Fit
class. - def hparameter: HyperParameter
Return the hyper-parameters (the NullModel has none).
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def ll(ms: Double = mse0, s2: Double = sig2e, m2: Int = m): Double
The log-likelihood function times -2.
The log-likelihood function times -2. Override as needed.
- ms
raw Mean Squared Error
- s2
MLE estimate of the population variance of the residuals
- Definition Classes
- Fit
- See also
www.stat.cmu.edu/~cshalizi/mreg/15/lectures/06/lecture-06.pdf
www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811 Section 2.11
- val modelConcept: URI
An optional reference to an ontological concept
An optional reference to an ontological concept
- Definition Classes
- Model
- def modelName: String
An optional name for the model (or modeling technique)
An optional name for the model (or modeling technique)
- Definition Classes
- Model
- def mse_: Double
Return the mean of squares for error (sse / df._2).
Return the mean of squares for error (sse / df._2). Must call diagnose first.
- Definition Classes
- Fit
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def parameter: VectoD
Return the vector of parameter/coefficient values.
- def predict(z: MatriD = null): VectoD
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
- def predict(z: VectoD): Double
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', i.e., '[b0] dot [z0]'.
- def predict(z: VectoI): Double
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
Given a new discrete data/input vector 'z', predict the 'y'-value of 'f(z)'.
- z
the vector to use for prediction
- Definition Classes
- Predictor
- def report: String
Return a basic report on the trained model.
- def resetDF(df_update: PairD): Unit
Reset the degrees of freedom to the new updated values.
Reset the degrees of freedom to the new updated values. For some models, the degrees of freedom is not known until after the model is built.
- df_update
the updated degrees of freedom (model, error)
- Definition Classes
- Fit
- def residual: VectoD
Return the vector of residuals/errors.
- var sig2e: Double
- Attributes
- protected
- Definition Classes
- Fit
- def summary(b: VectoD, stdErr: VectoD, vf: VectoD, show: Boolean = false): String
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
- b
the parameters/coefficients for the model
- vf
the Variance Inflation Factors (VIFs)
- show
flag indicating whether to print the summary
- Definition Classes
- Fit
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def test(modelName: String, doPlot: Boolean = true): Unit
Test the model on the full dataset (i.e., train and evaluate on full dataset).
Test the model on the full dataset (i.e., train and evaluate on full dataset).
- modelName
the name of the model being tested
- doPlot
whether to plot the actual vs. predicted response
- Definition Classes
- Predictor
- def toString(): String
- Definition Classes
- AnyRef → Any
- def train(x_null: MatriD, y_: VectoD): NullModel
Train the predictor by fitting the parameter vector (b-vector) in the null regression equation.
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated