object Initializer
The Initializer
object provides functions to initialize the parameters/weights
of Neural Networks. Supports Uniform, Normal and Nguyen & Widrow methods.
- Alphabetic
- By Inheritance
- Initializer
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def weightMat(rows: Int, cols: Int, stream: Int = 0, limit: Double = -1.0): MatriD
Generate a random weight/parameter matrix with elements values in (0, limit).
Generate a random weight/parameter matrix with elements values in (0, limit).
- rows
the number of rows
- cols
the number of columns
- stream
the random number stream to use
- limit
the maximum value for any weight
- def weightMat2(rows: Int, cols: Int, stream: Int = 0): MatriD
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
- rows
the number of rows
- cols
the number of columns
- stream
the random number stream to use
- def weightMat3(rows: Int, cols: Int, stream: Int = 0): MatriD
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow method.
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow method.
- rows
the number of rows
- cols
the number of columns
- stream
the random number stream to use
- See also
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6945481
- def weightVec(rows: Int, stream: Int = 0, limit: Double = -1.0): VectoD
Generate a random weight/parameter matrix with elements values in (0, limit).
Generate a random weight/parameter matrix with elements values in (0, limit).
- rows
the number of rows
- stream
the random number stream to use
- limit
the maximum value for any weight
- def weightVec2(rows: Int, stream: Int = 0): VectoD
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
Generate a random weight/parameter matrix with elements values from the Standard Normal distribution.
- rows
the number of rows
- stream
the random number stream to use
- def weightVec3(rows: Int, stream: Int = 0): VectoD
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow Method.
Generate a random weight/parameter matrix with elements values from the Nguyen & Widrow Method.
- rows
the number of rows
- stream
the random number stream to use
- See also
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6945481
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated