Packages

object NeuralNet_XL extends ModelFactory

The NeuralNet_XL companion object provides factory functions for buidling multi-layer neural nets (defaults to two hidden layers). Note, 'rescale' is defined in ModelFactory in Model.scala.

Linear Supertypes
ModelFactory, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NeuralNet_XL
  2. ModelFactory
  3. Error
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def allForms(x: MatriD): MatriD

    Create all forms/terms for each row/point placing them in a new matrix.

    Create all forms/terms for each row/point placing them in a new matrix.

    x

    the original un-expanded input/data matrix

    Definition Classes
    ModelFactory
  5. def apply(x: MatriD, y: VectoD, nz: Array[Int], fname: Strings, hparam: HyperParameter, af: Array[AFF]): NeuralNet_XL

    Create a NeuralNet_XL for a data matrix and response vector.

    Create a NeuralNet_XL for a data matrix and response vector.

    x

    the input/data matrix

    y

    the output/response vector

    nz

    the number of nodes in each hidden layer, e.g., Array (5, 10) means 2 hidden with sizes 5 and 10

    fname

    the feature/variable names

    hparam

    the hyper-parameters

    af

    the array of activation function families over all layers

  6. def apply(xy: MatriD, nz: Array[Int] = null, fname: Strings = null, hparam: HyperParameter = Optimizer.hp, af: Array[AFF] = Array (f_tanh, f_tanh, f_id)): NeuralNet_XL

    Create a NeuralNet_XL for a combined data matrix.

    Create a NeuralNet_XL for a combined data matrix.

    xy

    the combined input and output matrix

    nz

    the number of nodes in each hidden layer, e.g., Array (5, 10) means 2 hidden with sizes 5 and 10

    fname

    the feature/variable names

    hparam

    the hyper-parameters

    af

    the array of activation function families over all layers

  7. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  8. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  11. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  12. def forms(xi: VectoD, k: Int, nt: Int): VectoD

    Given a vector/point 'v', compute the values for all of its forms/terms, returning them as a vector (assumes Regression with intercept).

    Given a vector/point 'v', compute the values for all of its forms/terms, returning them as a vector (assumes Regression with intercept). Override for expanded columns, e.g., QuadRegression.

    xi

    the vector/point (i-th row of x) for creating forms/terms

    k

    the number of features/predictor variables (not counting intercept)

    nt

    the number of terms

    Definition Classes
    ModelFactory
  13. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  17. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  18. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  19. def numTerms(k: Int): Int

    The number of terms/parameters in the model (assumes Regression with intercept.

    The number of terms/parameters in the model (assumes Regression with intercept. Override for expanded columns, e.g., QuadRegression.

    k

    the number of features/predictor variables (not counting intercept)

    Definition Classes
    ModelFactory
  20. val rescale: Boolean

    The 'rescale' flag indicated whether the data is to be rescaled/normalized

    The 'rescale' flag indicated whether the data is to be rescaled/normalized

    Attributes
    protected
    Definition Classes
    ModelFactory
  21. def rescaleOff(): Unit

    Turn rescaling off.

    Turn rescaling off.

    Definition Classes
    ModelFactory
  22. def rescaleOn(): Unit

    Turn rescaling on.

    Turn rescaling on.

    Definition Classes
    ModelFactory
  23. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  24. def toString(): String
    Definition Classes
    AnyRef → Any
  25. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  26. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  27. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

Inherited from ModelFactory

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped