object Regression_WLS
The Regression_WLS
companion object provides methods for setting weights
and testing.
- Alphabetic
- By Inheritance
- Regression_WLS
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def reweightX(x: MatriD, rW: VectoD): MatriD
Reweight the data matrix 'x' by multiplying by the root weight 'rtW'.
Reweight the data matrix 'x' by multiplying by the root weight 'rtW'.
- x
the input/data m-by-n matrix
- rW
the root weight vector (rtW: either rootW or rW)
- def reweightY(y: VectoD, rW: VectoD): VectoD
Reweight the response vector matrix 'y' by multiplying by the root weight 'rtW'.
Reweight the response vector matrix 'y' by multiplying by the root weight 'rtW'.
- y
the response vector
- rW
the root weight vector (rtW: either rootW or rW)
- def setWeights(x: MatriD, y: VectoD, technique: RegTechnique.RegTechnique = QR, w0: VectoD = null): Unit
Estimate weights for the variables according to the reciprocal predicted rad's.
Estimate weights for the variables according to the reciprocal predicted rad's. Save the weight vector 'w' and root weight vector 'rootW' for the current model in companion object variables.
- x
the input/data m-by-n matrix
- y
the response vector
- technique
the technique used to solve for b in x.t*w*x*b = x.t*w*y
- def setWeights0(x: MatriD, y: VectoD, technique: RegTechnique.RegTechnique = QR, w0: VectoD = null): Unit
Estimate weights for the variables according to the reciprocal actual rad's.
Estimate weights for the variables according to the reciprocal actual rad's. Save the weight vector 'w' and root weight vector 'rootW' for the current model in companion object variables.
- x
the input/data m-by-n matrix
- y
the response vector
- technique
the technique used to solve for b in x.t*w*x*b = x.t*w*y
- See also
'setWeights' that used predicted rad
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def test(x: MatriD, y: VectoD, z: VectoD, w: VectoD = null): Unit
Test various regression techniques.
Test various regression techniques.
- x
the data matrix
- y
the response vector
- z
a vector to predict
- w
the root weights
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def weights: VectoD
Return the weight vector for the current model.
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated