class ANCOVA extends Predictor with Error
The ANCOVA
class supports ANalysis of COVAriance 'ANCOVA'. It allows
the addition of a categorical treatment variable 't' into a multiple linear
regression. This is done by introducing dummy variables 'dj' to distinguish
the treatment level. The problem is again to fit the parameter vector 'b'
in the augmented regression equation
y = b dot x + e = b0 + b_1 * x_1 + b_2 * x_2 + ... b_k * x_k + b_k+1 * d_1 + b_k+2 * d_2 + ... b_k+l * d_l + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
- Alphabetic
- By Inheritance
- ANCOVA
- Error
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ANCOVA(x_: MatriD, t: VectoI, y: VectoD, levels: Int, technique: RegTechnique = QR)
- x_
the data/design matrix of continuous variables
- t
the treatment/categorical variable vector
- y
the response vector
- levels
the number of treatment levels (1, ... levels)
- technique
the technique used to solve for b in x.t*x*b = x.t*y
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
assignDummyVars(): Unit
Assign values for the dummy variables based on the treatment vector 't'.
-
def
assignVars(): Unit
Assign values for the continuous variables from the 'x' matrix.
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
backwardElim(cols: Set[Int]): (Int, VectoD, VectoD)
Perform backward elimination to remove the least predictive variable from the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit.
Perform backward elimination to remove the least predictive variable from the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit. May be called repeatedly.
- cols
the columns of matrix x included in the existing model
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
coefficient: VectoD
Return the vector of coefficients.
-
def
crossVal(k: Int = 10): Unit
Perform 'k'-fold cross-validation.
Perform 'k'-fold cross-validation.
- k
the number of folds
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(): Unit
Compute the error and useful diagnostics.
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector FIX - implement in classes
- Definition Classes
- Predictor
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit 'rSquared'.
-
def
fitLabel: Seq[String]
Return the labels for the fit.
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures.
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
forwardSel(cols: Set[Int]): (Int, VectoD, VectoD)
Perform forward selection to add the most predictive variable to the existing model, returning the variable to add, the new parameter vector and the new quality of fit.
Perform forward selection to add the most predictive variable to the existing model, returning the variable to add, the new parameter vector and the new quality of fit. May be called repeatedly.
- cols
the columns of matrix x included in the existing model
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predict(z: VectoD): Double
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b0, b1, b2) dot (1, z1, z2).
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
- val rg: Regression
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(yy: VectoD = y): Regression
Retrain the predictor by fitting the parameter vector (b-vector) in the multiple regression equation
-
def
vif: VectoD
Compute the Variance Inflation Factor (VIF) for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables.
Compute the Variance Inflation Factor (VIF) for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'xj' can be predicted from the other variables, so 'xj' is a candidate for removal from the model.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- val x: MatrixD