object Regression_WLS
The Regression_WLS
companion object provides methods for setting weights
and testing.
- Alphabetic
- By Inheritance
- Regression_WLS
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
reweightX(x: MatriD, rW: VectoD): MatriD
Reweight the data matrix 'x' by multiplying by the root weight 'rtW'.
Reweight the data matrix 'x' by multiplying by the root weight 'rtW'.
- x
the input/data m-by-n matrix
- rW
the root weight vector (rtW: either rootW or rW)
-
def
reweightY(y: VectoD, rW: VectoD): VectoD
Reweight the response vector matrix 'y' by multiplying by the root weight 'rtW'.
Reweight the response vector matrix 'y' by multiplying by the root weight 'rtW'.
- y
the response vector
- rW
the root weight vector (rtW: either rootW or rW)
-
def
setWeights(x: MatriD, y: VectoD, technique: RegTechnique = QR, w0: VectoD = null): Unit
Estimate weights for the variables according to the reciprocal predicted rad's.
Estimate weights for the variables according to the reciprocal predicted rad's. Save the weight vector 'w' and root weight vector 'rootW' for the current model in companion object variables.
- x
the input/data m-by-n matrix
- y
the response vector
- technique
the technique used to solve for b in x.t*w*x*b = x.t*w*y
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
test(x: MatriD, y: VectoD, z: VectoD, w: VectoD = null): Unit
Test various regression techniques.
Test various regression techniques.
- x
the data matrix
- y
the response vector
- z
a vector to predict
- w
the root weights
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
weights: VectoD
Return the weight vector for the current model.