Packages

class NullModel extends Fit with Predictor with Error

The NullModel class implements the simplest type of predictive modeling technique that just predicts the response 'y' to be the mean. Fit the parameter vector 'b' in the regression equation

y = b dot x + e = b0 + e

where 'e' represents the residuals (the part not explained by the model).

Linear Supertypes
Error, Predictor, Fit, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NullModel
  2. Error
  3. Predictor
  4. Fit
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NullModel(y: VectoD)

    y

    the response vector

Value Members

  1. def coefficient: VectoD

    Return the vector of coefficient/parameter values.

    Return the vector of coefficient/parameter values.

    Definition Classes
    Predictor
  2. val df: (Double, Double)
    Definition Classes
    Fit
  3. def diagnose(e: VectoD, w: VectoD = null, yp: VectoD = null): Unit

    Given the error/residual vector, compute the quality of fit measures.

    Given the error/residual vector, compute the quality of fit measures.

    e

    the corresponding m-dimensional error vector (y - yp)

    w

    the weights on the instances

    yp

    the predicted response vector (x * b)

    Definition Classes
    Fit
  4. def eval(): Unit

    Compute the error and useful diagnostics.

    Compute the error and useful diagnostics.

    Definition Classes
    NullModelPredictor
  5. def eval(xx: MatriD, yy: VectoD): Unit

    Compute the error and useful diagnostics for the test dataset.

    Compute the error and useful diagnostics for the test dataset.

    xx

    the test data matrix

    yy

    the test response vector FIX - implement in classes

    Definition Classes
    Predictor
  6. def f_(z: Double): String

    Format a double value.

    Format a double value.

    z

    the double value to format

    Definition Classes
    Fit
  7. def fit: VectoD

    Return the quality of fit including 'sst', 'sse', 'mse0', rmse', 'mae', 'rSq', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'.

    Return the quality of fit including 'sst', 'sse', 'mse0', rmse', 'mae', 'rSq', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Note that 'rSq' is the number 5 measure. Override to add more quality of fit measures.

    Definition Classes
    Fit
  8. def fitLabel: Seq[String]

    Return the labels for the quality of fit measures.

    Return the labels for the quality of fit measures. Override to add more quality of fit measures.

    Definition Classes
    Fit
  9. def fitMap: Map[String, String]

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered).

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered). Override to add more quality of fit measures.

    Definition Classes
    Fit
  10. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  11. val index_rSq: Int
    Definition Classes
    Fit
  12. def mse_: Double

    Return the mean of squares for error (sse / df._2).

    Return the mean of squares for error (sse / df._2). Must call diagnose first.

    Definition Classes
    Fit
  13. def predict(z: VectoD): Double

    Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', i.e., '[b0] dot [z0]'.

    Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', i.e., '[b0] dot [z0]'.

    z

    the new vector to predict

    Definition Classes
    NullModelPredictor
  14. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  15. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  16. def sumCoeff(b: VectoD, stdErr: VectoD = null): String

    Produce the summary report portion for the cofficients.

    Produce the summary report portion for the cofficients.

    b

    the parameters/coefficients for the model

    Definition Classes
    Fit
  17. def summary(b: VectoD, stdErr: VectoD = null): String

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    b

    the parameters/coefficients for the model

    Definition Classes
    Fit
  18. def train(yy: VectoD = y): NullModel

    Train the predictor by fitting the parameter vector (b-vector) in the simpler regression equation.

    Train the predictor by fitting the parameter vector (b-vector) in the simpler regression equation.

    yy

    the response vector

    Definition Classes
    NullModelPredictor