class ANOVA1 extends PredictorVec
The ANOVA1
class supports one-way ANalysis Of VAriance (ANOVA), i.e,
it allows only one binary/categorial treatment variable. It is framed using
General Linear Model 'GLM' notation and supports the use of one
binary/categorical treatment variable 't'. This is done by introducing
dummy variables 'd_j' to distinguish the treatment level. The problem is
again to fit the parameter vector 'b' in the following equation
y = b dot x + e = b_0 + b_1 * d_1 + b_1 * d_2 ... b_k * d_k + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations:
x.t * x * b = x.t * y b = fac.solve (.)
- See also
psych.colorado.edu/~carey/Courses/PSYC5741/handouts/GLM%20Theory.pdf
ANCOVA
for models with multiple variables
- Alphabetic
- By Inheritance
- ANOVA1
- PredictorVec
- Error
- Predictor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ANOVA1(t: VectoD, levels: Int, y: VectoD, technique: RegTechnique = QR)
- t
the binary/categorical treatment variable vector double with integer values
- levels
the number of treatment levels (1, ... levels)
- y
the response vector
- technique
the technique used to solve for b in x.t*x*b = x.t*y
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
assignDummyVar(lev: Int): VectorD
Assign values for the dummy variables based on a treatment variable's level 'lev'.
Assign values for the dummy variables based on a treatment variable's level 'lev'.
- lev
treatment level of the variable
-
def
assignDummyVars(tt: VectoD = t): Unit
Assign values for the dummy variables based on the treatment vector 't'.
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
backwardElim(cols: Set[Int]): (Int, VectoD, VectoD)
Perform backward elimination to remove the least predictive variable from the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit.
Perform backward elimination to remove the least predictive variable from the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit. May be called repeatedly.
- cols
the columns of matrix x included in the existing model
- Definition Classes
- PredictorVec
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
coefficient: VectoD
Return the vector of coefficients.
Return the vector of coefficients.
- Definition Classes
- PredictorVec → Predictor
-
def
crossVal(k: Int, ord: Int): Unit
The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method.
The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method. The 'algor' parameter may be specified as a lambda function to create the prediction algorithm.
- k
the number of crosses and cross-validations (defaults to 10x).
- ord
the given order
- Definition Classes
- ANOVA1 → PredictorVec
-
def
crossValidate(algor: (VectoD, VectoD, Int) ⇒ PredictorVec, ord: Int, k: Int = 10): Array[Statistic]
- Definition Classes
- PredictorVec
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(tt: VectoD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- yy
the test response vector
- Definition Classes
- PredictorVec
-
def
eval(): Unit
Compute the error and useful diagnostics for the entire dataset.
Compute the error and useful diagnostics for the entire dataset.
- Definition Classes
- PredictorVec → Predictor
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector FIX - implement in classes
- Definition Classes
- Predictor
-
def
expand(t: Double): VectoD
Expand the scalar 't' into a vector of terms/columns.
Expand the scalar 't' into a vector of terms/columns.
- t
the scalar to expand into the vector
- Definition Classes
- ANOVA1 → PredictorVec
-
def
expand(t: VectoD): MatriD
Expand the vector 't' into a matrix.
Expand the vector 't' into a matrix.
- t
the vector to expand into the matrix
- Definition Classes
- PredictorVec
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit measures including 'rSq'.
Return the quality of fit measures including 'rSq'.
- Definition Classes
- PredictorVec
-
def
fitLabel: Seq[String]
Return the labels for the fit.
Return the labels for the fit.
- Definition Classes
- PredictorVec
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures.
Build a map of quality of fit measures.
- Definition Classes
- PredictorVec
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
def
forwardSel(cols: Set[Int]): (Int, VectoD, VectoD)
Perform forward selection to add the most predictive variable to the existing model, returning the variable to add, the new parameter vector and the new quality of fit.
Perform forward selection to add the most predictive variable to the existing model, returning the variable to add, the new parameter vector and the new quality of fit. May be called repeatedly.
- cols
the columns of matrix x included in the existing model
- Definition Classes
- PredictorVec
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predict(z: Double): Double
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
- z
the new vector to predict
- Definition Classes
- ANOVA1 → PredictorVec
-
def
predict(z: VectoD): Double
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).
- z
the new expanded/orhogonalized vector to predict
- Definition Classes
- PredictorVec → Predictor
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- PredictorVec → Predictor
-
var
rg: Regression
- Attributes
- protected
- Definition Classes
- PredictorVec
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(yy: VectoD = y): Regression
Train the predictor by fitting the parameter vector (b-vector) in the multiple regression equation
Train the predictor by fitting the parameter vector (b-vector) in the multiple regression equation
yy = b dot x + e = [b_0, ... b_k] dot [1, d_1, ... d_k] + e
using the least squares method.
- yy
the response vector
- Definition Classes
- ANOVA1 → PredictorVec → Predictor
-
def
vif: VectoD
Compute the Variance Inflation Factor (VIF) for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables.
Compute the Variance Inflation Factor (VIF) for each variable to test for multi-collinearity by regressing 'xj' against the rest of the variables. A VIF over 10 indicates that over 90% of the variance of 'xj' can be predicted from the other variables, so 'xj' is a candidate for removal from the model.
- Definition Classes
- PredictorVec
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- val x: MatrixD