class PoissonRegression extends PredictorMat
The PoissonRegression
class supports Poisson regression. In this case,
x' may be multi-dimensional '[1, x_1, ... x_k]'. Fit the parameter
vector 'b' in the Poisson regression equation
log (mu(x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k
where 'e' represents the residuals (the part not explained by the model) and 'y' is now integer valued.
- See also
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
- Alphabetic
- By Inheritance
- PoissonRegression
- PredictorMat
- Error
- Predictor
- Fit
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
PoissonRegression(x: MatriD, y: VectoD, fn: Array[String] = null)
- x
the input/design matrix augmented with a first column of ones
- y
the integer response vector, y_i in {0, 1, ... }
- fn
the names of the features/variable
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
b: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
coefficient: VectoD
Return the vector of coefficient/parameter values.
Return the vector of coefficient/parameter values.
- Definition Classes
- Predictor
-
def
crossVal(k: Int = 10): Unit
Perform 'k'-fold cross-validation.
Perform 'k'-fold cross-validation.
- k
the number of folds
- Definition Classes
- PoissonRegression → PredictorMat
-
def
crossValidate(algor: (MatriD, VectoD) ⇒ PredictorMat, k: Int = 10): Array[Statistic]
- Definition Classes
- PredictorMat
-
val
df: (Double, Double)
- Definition Classes
- Fit
-
def
diagnose(e: VectoD, w: VectoD = null, yp: VectoD = null): Unit
Given the error/residual vector, compute the quality of fit measures.
Given the error/residual vector, compute the quality of fit measures.
- e
the corresponding m-dimensional error vector (y - yp)
- w
the weights on the instances
- yp
the predicted response vector (x * b)
- Definition Classes
- Fit
-
val
e: VectoD
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
eval(): Unit
Compute the error and useful diagnostics.
Compute the error and useful diagnostics. FIX - not x * b
- Definition Classes
- PoissonRegression → PredictorMat → Predictor
-
def
eval(xx: MatriD, yy: VectoD): Unit
Compute the error and useful diagnostics for the test dataset.
Compute the error and useful diagnostics for the test dataset.
- xx
the test data matrix
- yy
the test response vector
- Definition Classes
- PredictorMat → Predictor
-
def
f_(z: Double): String
Format a double value.
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit: VectoD
Return the quality of fit including 'rSquared'.
Return the quality of fit including 'rSquared'. Assumes both train_null and train have already been called.
- Definition Classes
- PoissonRegression → Fit
-
def
fitLabel: Seq[String]
Return the labels for the fit.
Return the labels for the fit.
- Definition Classes
- PoissonRegression → Fit
-
def
fitMap: Map[String, String]
Build a map of quality of fit measures (use of
LinedHashMap
makes it ordered).Build a map of quality of fit measures (use of
LinedHashMap
makes it ordered). Override to add more quality of fit measures.- Definition Classes
- Fit
-
final
def
flaw(method: String, message: String): Unit
- Definition Classes
- Error
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
index_rSq: Int
- Definition Classes
- Fit
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
k: Int
- Attributes
- protected
- Definition Classes
- PredictorMat
-
def
ll(b: VectoD): Double
For a given parameter vector 'b', compute '-Log-Likelihood' (-LL).
For a given parameter vector 'b', compute '-Log-Likelihood' (-LL). '-LL' is the standard measure.
- b
the parameters to fit
- See also
dept.stat.lsa.umich.edu/~kshedden/Courses/Stat600/Notes/glm.pdf
-
def
ll_null(b: VectoD): Double
For a given parameter vector 'b = [b(0)], compute -2 * Log-Likelihood' (-2LL).
For a given parameter vector 'b = [b(0)], compute -2 * Log-Likelihood' (-2LL). '-2LL' is the standard measure that follows a Chi-Square distribution.
- b
the parameters to fit
- See also
dept.stat.lsa.umich.edu/~kshedden/Courses/Stat600/Notes/glm.pdf
-
val
m: Int
- Attributes
- protected
- Definition Classes
- PredictorMat
-
def
mse_: Double
Return the mean of squares for error (sse / df._2).
Return the mean of squares for error (sse / df._2). Must call diagnose first.
- Definition Classes
- Fit
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predict(z: VectoD): Double
Classify the value of 'y = f(z)' by evaluating the formula 'y = exp (b dot z)'.
Classify the value of 'y = f(z)' by evaluating the formula 'y = exp (b dot z)'.
- z
the new vector to predict
- Definition Classes
- PoissonRegression → PredictorMat → Predictor
-
def
predict(z: MatriD): VectoD
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
Predict the value of 'y = f(z)' by evaluating the formula 'y = b dot z', for each row of matrix 'z'.
- z
the new matrix to predict
- Definition Classes
- PredictorMat
-
def
predict(z: VectoI): Double
Given a new discrete data vector z, predict the y-value of f(z).
Given a new discrete data vector z, predict the y-value of f(z).
- z
the vector to use for prediction
- Definition Classes
- Predictor
-
def
residual: VectoD
Return the vector of residuals/errors.
Return the vector of residuals/errors.
- Definition Classes
- Predictor
-
def
sumCoeff(b: VectoD, stdErr: VectoD = null): String
Produce the summary report portion for the cofficients.
Produce the summary report portion for the cofficients.
- b
the parameters/coefficients for the model
- Definition Classes
- Fit
-
def
summary(): Unit
Compute diagostics for the regression model.
Compute diagostics for the regression model.
- Definition Classes
- PredictorMat
-
def
summary(b: VectoD, stdErr: VectoD = null): String
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.
- b
the parameters/coefficients for the model
- Definition Classes
- Fit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(yy: VectoD = y.toDouble): PoissonRegression
For the full model, train the predictor by fitting the parameter vector (b-vector) in the Poisson regression equation using maximum likelihood.
For the full model, train the predictor by fitting the parameter vector (b-vector) in the Poisson regression equation using maximum likelihood.
- yy
the response vector
- Definition Classes
- PoissonRegression → PredictorMat → Predictor
-
def
train(): PredictorMat
Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.
Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.
- Definition Classes
- PredictorMat
-
def
train_null(): Unit
For the null model, train the classifier by fitting the parameter vector (b-vector) in the Poisson regression equation using maximum likelihood.
For the null model, train the classifier by fitting the parameter vector (b-vector) in the Poisson regression equation using maximum likelihood. Do this by minimizing '-2LL'.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
val
x: MatriD
- Attributes
- protected
- Definition Classes
- PredictorMat
-
val
y: VectoD
- Attributes
- protected
- Definition Classes
- PredictorMat