Packages

class Perceptron extends PredictorMat

The Perceptron class supports single-output, 2-layer (input and output) Neural-Networks. Although perceptrons are typically used for classification, this class is used for prediction. Given several input vectors and output values (training data), fit the weights/parameters 'b' connecting the layers, so that for a new input vector 'z', the net can predict the output value, i.e.,

z = f (b dot z)

The parameter vector 'b' (w) gives the weights between input and output layers. Note, b0 is treated as the bias, so x0 must be 1.0.

Linear Supertypes
PredictorMat, Error, Predictor, Fit, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Perceptron
  2. PredictorMat
  3. Error
  4. Predictor
  5. Fit
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Perceptron(x: MatriD, y: VectoD, eta: Double = 0.1, f1: FunctionS2S = sigmoid, f1D: FunctionV_2V = sigmoidDV)

    x

    the input matrix (training data consisting of m input vectors)

    y

    the output vector (training data consisting of m output values)

    eta

    the learning/convergence rate (requires adjustment)

    f1

    the activation function (mapping scalar => scalar)

Value Members

  1. def coefficient: VectoD

    Return the vector of coefficient/parameter values.

    Return the vector of coefficient/parameter values.

    Definition Classes
    Predictor
  2. def crossVal(k: Int = 10): Unit

    Perform 'k'-fold cross-validation.

    Perform 'k'-fold cross-validation.

    k

    the number of folds

    Definition Classes
    PerceptronPredictorMat
  3. def crossValidate(algor: (MatriD, VectoD) ⇒ PredictorMat, k: Int = 10): Array[Statistic]
    Definition Classes
    PredictorMat
  4. val df: (Double, Double)
    Definition Classes
    Fit
  5. def diagnose(e: VectoD, w: VectoD = null, yp: VectoD = null): Unit

    Given the error/residual vector, compute the quality of fit measures.

    Given the error/residual vector, compute the quality of fit measures.

    e

    the corresponding m-dimensional error vector (y - yp)

    w

    the weights on the instances

    yp

    the predicted response vector (x * b)

    Definition Classes
    Fit
  6. def eval(): Unit

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'.

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'.

    Definition Classes
    PerceptronPredictorMatPredictor
  7. def eval(xx: MatriD, yy: VectoD): Unit

    Compute the error and useful diagnostics for the test dataset.

    Compute the error and useful diagnostics for the test dataset.

    xx

    the test data matrix

    yy

    the test response vector

    Definition Classes
    PredictorMatPredictor
  8. def f_(z: Double): String

    Format a double value.

    Format a double value.

    z

    the double value to format

    Definition Classes
    Fit
  9. def fit: VectoD

    Return the quality of fit including 'sst', 'sse', 'mse0', rmse', 'mae', 'rSq', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'.

    Return the quality of fit including 'sst', 'sse', 'mse0', rmse', 'mae', 'rSq', 'df._2', 'rBarSq', 'fStat', 'aic', 'bic'. Note, if 'sse > sst', the model introduces errors and the 'rSq' may be negative, otherwise, R^2 ('rSq') ranges from 0 (weak) to 1 (strong). Note that 'rSq' is the number 5 measure. Override to add more quality of fit measures.

    Definition Classes
    Fit
  10. def fitLabel: Seq[String]

    Return the labels for the quality of fit measures.

    Return the labels for the quality of fit measures. Override to add more quality of fit measures.

    Definition Classes
    Fit
  11. def fitMap: Map[String, String]

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered).

    Build a map of quality of fit measures (use of LinedHashMap makes it ordered). Override to add more quality of fit measures.

    Definition Classes
    Fit
  12. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  13. val index_rSq: Int
    Definition Classes
    Fit
  14. def mse_: Double

    Return the mean of squares for error (sse / df._2).

    Return the mean of squares for error (sse / df._2). Must call diagnose first.

    Definition Classes
    Fit
  15. def predict(z: MatriD): VectoD

    Given a new input matrix 'z', predict the output/response value 'f(z)'.

    Given a new input matrix 'z', predict the output/response value 'f(z)'.

    z

    the new input matrix

    Definition Classes
    PerceptronPredictorMat
  16. def predict(z: VectoD): Double

    Given a new input vector 'z', predict the output/response value 'f(z)'.

    Given a new input vector 'z', predict the output/response value 'f(z)'.

    z

    the new input vector

    Definition Classes
    PerceptronPredictorMatPredictor
  17. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  18. def reset(eta_: Double): Unit

    Reset the learning rate 'eta'.

  19. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  20. def setWeights(ymin: Double = 0.0, ymax: Double = 1.0, stream: Int = 0): Unit

    Randomly initialize the parameter/weight vector 'b' with values in '(ymin, ymax)' before training.

    Randomly initialize the parameter/weight vector 'b' with values in '(ymin, ymax)' before training.

    ymin

    the minimum value to produce

    ymax

    the maximum value to produce

    stream

    the random number stream to use

  21. def setWeights(w0: VectoD): Unit

    Set the initial parameter/weight vector 'b' manually before training.

    Set the initial parameter/weight vector 'b' manually before training.

    w0

    the initial weights for b

  22. def sumCoeff(b: VectoD, stdErr: VectoD = null): String

    Produce the summary report portion for the cofficients.

    Produce the summary report portion for the cofficients.

    b

    the parameters/coefficients for the model

    Definition Classes
    Fit
  23. def summary(): Unit

    Compute diagostics for the regression model.

    Compute diagostics for the regression model.

    Definition Classes
    PredictorMat
  24. def summary(b: VectoD, stdErr: VectoD = null): String

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    Produce a summary report with diagnostics for each predictor 'x_j' and the overall quality of fit.

    b

    the parameters/coefficients for the model

    Definition Classes
    Fit
  25. def train(yy: VectoD = y): Perceptron

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'.

    Given training data 'x' and 'yy', fit the parameter/weight vector 'b'. Minimize the error in the prediction by adjusting the weight vector 'b'. The error 'e' is simply the difference between the target value 'yy' and the predicted value 'yp'. Minimize the dot product of error with itself using gradient-descent (move in the opposite direction of the gradient).

    yy

    the output vector

    Definition Classes
    PerceptronPredictorMatPredictor
  26. def train(): PredictorMat

    Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.

    Given a set of data vectors 'x's and their corresponding responses 'y's, passed into the implementing class, train the prediction function 'y = f(x)' by fitting its parameters.

    Definition Classes
    PredictorMat