Packages

abstract class NeuralNet extends Predictor with Error

The NeuralNet abstract class provides the basic structure and API for a variety of Neural Networks.

Linear Supertypes
Error, Predictor, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NeuralNet
  2. Error
  3. Predictor
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NeuralNet(x: MatriD, y: MatriD, eta: Double = 0.1)

    x

    the m-by-nx input matrix (training data consisting of m input vectors)

    y

    the m-by-ny output matrix (training data consisting of m output vectors)

    eta

    the learning/convergence rate (typically less than 1.0)

Abstract Value Members

  1. abstract def crossVal(k: Int = 10): Unit

    The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method.

    The 'crossVal' abstract method must be coded in implementing classes to call the above 'crossValidate' method. The 'algor' parameter may be specified as a lambda function to create the prediction algorithm.

    k

    the number of crosses and cross-validations (defaults to 10x).

  2. abstract def predict(z: MatriD): MatriD

    Given a new input matrix 'z', predict the output/response matrix 'f(z)'.

    Given a new input matrix 'z', predict the output/response matrix 'f(z)'.

    z

    the new input matrix

  3. abstract def predictV(z: VectoD): VectoD

    Given a new input vector 'z', predict the output/response vector 'f(z)'.

    Given a new input vector 'z', predict the output/response vector 'f(z)'.

    z

    the new input vector

  4. abstract def setWeights(stream: Int = 0, limit: Double = 1.0 / sqrt (nx)): Unit

    Set the initial weight matrix (ces) with values in (0, limit) before training.

    Set the initial weight matrix (ces) with values in (0, limit) before training.

    stream

    the random number stream to use

    limit

    the maximum value for any weight

  5. abstract def train(): NeuralNet

    Given training data 'x' and 'y', fit the parameter/weight matrix.

  6. abstract def weights: Array[MatriD]

    Return the weight matrix.

Concrete Value Members

  1. def coefficient: VectoD

    Return the vector of coefficient/parameter values.

    Return the vector of coefficient/parameter values.

    Definition Classes
    Predictor
  2. def crossValidate(algor: (MatriD, MatriD) ⇒ NeuralNet, k: Int = 10): Array[Statistic]
  3. def eval(xx: MatriD, yy: MatriD): Unit

    Evaluate the quality of the fit for the parameter/weight matrices on the test dataset.

    Evaluate the quality of the fit for the parameter/weight matrices on the test dataset.

    xx

    the test input data matrix

    yy

    the test output response matrix

  4. def eval(): Unit

    Evaluate the quality of the fit for the parameter weight matrices on the the entire dataset or the training dataset.

    Evaluate the quality of the fit for the parameter weight matrices on the the entire dataset or the training dataset.

    Definition Classes
    NeuralNetPredictor
  5. def eval(xx: MatriD, yy: VectoD): Unit

    Compute the error and useful diagnostics for the test dataset.

    Compute the error and useful diagnostics for the test dataset.

    xx

    the test data matrix

    yy

    the test response vector FIX - implement in classes

    Definition Classes
    Predictor
  6. def fitLabel: Seq[String]

    Return the labels for the quality of fit measures.

  7. def fitMap(): Unit

    Show 'fitMap' for each y-column.

  8. final def flaw(method: String, message: String): Unit
    Definition Classes
    Error
  9. def predict(z: VectoD): Double

    Given a new input vector 'z', predict the output/response value 'f(z)'.

    Given a new input vector 'z', predict the output/response value 'f(z)'. Return only the first output variable's value.

    z

    the new input vector

    Definition Classes
    NeuralNetPredictor
  10. def predict(z: VectoI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  11. def reset(eta_: Double): Unit

    Reset the learning rate 'eta'.

    Reset the learning rate 'eta'.

    eta_

    the learning rate

  12. def residual: VectoD

    Return the vector of residuals/errors.

    Return the vector of residuals/errors.

    Definition Classes
    Predictor
  13. def train(yy: VectoD): NeuralNet

    Given training data 'x' and 'yy', fit the parameter/weight matrix.

    Given training data 'x' and 'yy', fit the parameter/weight matrix.

    yy

    the vector of outputs for the first variable (currently ignored)

    Definition Classes
    NeuralNetPredictor