ModRosenbrock

scalation.dynamics.ModRosenbrock
object ModRosenbrock extends Integrator

The ModRosenbroc object provides a numerical ODE solver for stiff systems. Given an unknown, time-dependent function y(t) governed by an Ordinary Differential Equation (ODE) of the form d/dt y(t) = f(t, y) compute y(t) using a (2,3)-order Modified Rosenbrock ODE Integrator (Modified Rosenbrock) or ode.23s Note: the integrateV method for a system of separable ODEs is mixed in from the Integrator trait.

Attributes

See also
Graph
Supertypes
trait Integrator
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def integrate(f: Derivative, y0: Double, t: Double, t0: Double, step: Double): Double

Compute y(t) governed by a differential equation using numerical integration of the derivative function f(t, y) using a (2,3)-order Modified Rosenbrock method to return the value of y(t) at time t.

Compute y(t) governed by a differential equation using numerical integration of the derivative function f(t, y) using a (2,3)-order Modified Rosenbrock method to return the value of y(t) at time t.

Value parameters

f

the derivative function f(t, y)

step

the middle step size

t

the time value at which to compute y(t)

t0

the initial time

y0

value of the y-function at time t0, y0 = y(t0)

Attributes

def integrateVV(f: Array[DerivativeV], y0: VectorD, t: Double, t0: Double, step: Double): VectorD

Compute y(t), a vector, governed by a system of differential equations using numerical integration of the derivative function f(t, y) using a (2,3)-order Modified Rosenbrock method to return the value of y(t) at time t.

Compute y(t), a vector, governed by a system of differential equations using numerical integration of the derivative function f(t, y) using a (2,3)-order Modified Rosenbrock method to return the value of y(t) at time t.

Value parameters

f

the array of derivative functions [f(t, y)] where y is a vector

step

the step size

t

the time value at which to compute y(t)

t0

the initial time

y0

the value of the y-function at time t0, y0 = y(t0)

Attributes

Inherited methods

def getError: Double

Get the error estimate.

Get the error estimate.

Attributes

Inherited from:
Integrator
def integrateV(f: Array[Derivative], y0: VectorD, t: Double, t0: Double, step: Double): VectorD

Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions. Each derivative function takes a scalar t and a scalar y_j = y(j).

Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions. Each derivative function takes a scalar t and a scalar y_j = y(j).

Value parameters

f

the array of derivative functions [f_j(t, y_j)]

step

the step size

t

the time value at which to compute y(t)

t0

the initial time

y0

the initial value vector, y0 = y(t0)

Attributes

Inherited from:
Integrator

Inherited fields

protected val defaultStepSize: Double

The default step size for the t dimension

The default step size for the t dimension

Attributes

Inherited from:
Integrator
protected var error: Double

Estimate of the error in calculating y

Estimate of the error in calculating y

Attributes

Inherited from:
Integrator