scalation.modeling.neuralnet
Members list
Type members
Classlikes
The CNN_1D
class implements a Convolutionsl Network model. The model is trained using a data matrix x and response matrix y.
The CNN_1D
class implements a Convolutionsl Network model. The model is trained using a data matrix x and response matrix y.
Value parameters
- f
-
the activation function family for layers 1->2 (input to hidden)
- f1
-
the activation function family for layers 2->3 (hidden to output)
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters for the model/network
- itran
-
the inverse transformation function returns responses to original scale
- nc
-
the width of the filters (size of cofilters)
- nf
-
the number of filters for this convolutional layer
- x
-
the input/data matrix with instances stored in rows
- y
-
the output/response matrix, where y_i = response for row i of matrix x
Attributes
- Companion
- object
- Supertypes
The CoFilter_1D
class provides a convolution filter (cofilter) for taking a weighted average over a window of an input vector.
The CoFilter_1D
class provides a convolution filter (cofilter) for taking a weighted average over a window of an input vector.
Value parameters
- width
-
the width of the cofilter
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
The CoFilter_1D
object provides the convolution and pooling operators.
The CoFilter_1D
object provides the convolution and pooling operators.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
CoFilter_1D.type
The ELM_3L1
class supports single-output, 3-layer (input, hidden and output) Extreme-Learning Machines. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters a and b connecting the layers, so that for a new input vector v, the net can predict the output value, i.e., yp = b * f (a * v) where f is the activation function and the parameter a and b are the parameters between input-hidden and hidden-output layers. Like Perceptron
which adds input 'x0 = 1' to account for the intercept/bias, ELM_3L1
explicitly adds bias.
The ELM_3L1
class supports single-output, 3-layer (input, hidden and output) Extreme-Learning Machines. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters a and b connecting the layers, so that for a new input vector v, the net can predict the output value, i.e., yp = b * f (a * v) where f is the activation function and the parameter a and b are the parameters between input-hidden and hidden-output layers. Like Perceptron
which adds input 'x0 = 1' to account for the intercept/bias, ELM_3L1
explicitly adds bias.
Value parameters
- f
-
the activation function family for layers 1->2 (input to hidden)
- fname_
-
the feature/variable names (if null, use x_j's)
- hparam
-
the hyper-parameters for the model/network
- itran
-
the inverse transformation function returns responses to original scale
- nz
-
the number of nodes in hidden layer (-1 => use default formula)
- x
-
the m-by-n input matrix (training data consisting of m input vectors)
- y
-
the m output vector (training data consisting of m output scalars)
Attributes
- Companion
- object
- Supertypes
The ELM_3L1
companion object provides factory methods for creating three-layer (one hidden layer) extreme learning machines. Note, 'scale' is defined in Scalaing
.
The ExampleConcrete
class stores a medium-sized example dataset from the UCI Machine Learning Repository, "Abstract: Concrete is a highly complex material. The slump flow of concrete is not only determined by the water content, but that is also influenced by other concrete ingredients."
The ExampleConcrete
class stores a medium-sized example dataset from the UCI Machine Learning Repository, "Abstract: Concrete is a highly complex material. The slump flow of concrete is not only determined by the water content, but that is also influenced by other concrete ingredients."
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_Concrete.type
The NetParam
class bundles parameter weights and biases together.
The NetParam
class bundles parameter weights and biases together.
Value parameters
- b
-
the bias/intercept vector
- w
-
the weight matrix
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The NeuralNet_2L
class supports multi-output, 2-layer (input and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the weights/parameters b connecting the layers, so that for a new input vector z, the net can predict the output value, i.e., yp_j = f (b dot z) where f is the activation function and the parameters b gives the weights between input and output layers. NOTE, b0 is treated as the bias, so x0 must be 1.0.
The NeuralNet_2L
class supports multi-output, 2-layer (input and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the weights/parameters b connecting the layers, so that for a new input vector z, the net can predict the output value, i.e., yp_j = f (b dot z) where f is the activation function and the parameters b gives the weights between input and output layers. NOTE, b0 is treated as the bias, so x0 must be 1.0.
Value parameters
- f
-
the activation function family for layers 1->2 (input to output)
- fname_
-
the feature/variable names (if null, use x_j's)
- hparam
-
the hyper-parameters for the model/network
- itran
-
the inverse transformation function returns response matrix to original scale
- x
-
the m-by-n input/data matrix (training data consisting of m input vectors)
- y
-
the m-by-ny output/response matrix (training data consisting of m output vectors)
Attributes
- Companion
- object
- Supertypes
The NeuralNet_2L
companion object provides factory methods for creating two-layer (no hidden layer) neural networks. Note, 'scale' is defined in Scaling
.
The NeuralNet_2L
companion object provides factory methods for creating two-layer (no hidden layer) neural networks. Note, 'scale' is defined in Scaling
.
Attributes
- Companion
- class
- Supertypes
- Self type
-
NeuralNet_2L.type
The NeuralNet_3L
class supports multi-output, 3-layer (input, hidden and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters a and b connecting the layers, so that for a new input vector v, the net can predict the output value, i.e., yp = f1 (b * f (a * v)) where f and f1 are the activation functions and the parameter a and b are the parameters between input-hidden and hidden-output layers. Unlike NeuralNet_2L
which adds input x0 = 1 to account for the intercept/bias, NeuralNet_3L
explicitly adds bias.
The NeuralNet_3L
class supports multi-output, 3-layer (input, hidden and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters a and b connecting the layers, so that for a new input vector v, the net can predict the output value, i.e., yp = f1 (b * f (a * v)) where f and f1 are the activation functions and the parameter a and b are the parameters between input-hidden and hidden-output layers. Unlike NeuralNet_2L
which adds input x0 = 1 to account for the intercept/bias, NeuralNet_3L
explicitly adds bias.
Value parameters
- f
-
the activation function family for layers 1->2 (input to output)
- f1
-
the activation function family for layers 2->3 (hidden to output)
- fname_
-
the feature/variable names (if null, use x_j's)
- hparam
-
the hyper-parameters for the model/network
- itran
-
the inverse transformation function returns response matrix to original scale
- nz
-
the number of nodes in hidden layer (-1 => use default formula)
- x
-
the m-by-n input/data matrix (training data consisting of m input vectors)
- y
-
the m-by-ny output/response matrix (training data consisting of m output vectors)
Attributes
- Companion
- object
- Supertypes
The NeuralNet_3L
companion object provides factory methods for creating three-layer (one hidden layer) neural networks. Note, 'scale' is defined in Scaling
.
The NeuralNet_3L
companion object provides factory methods for creating three-layer (one hidden layer) neural networks. Note, 'scale' is defined in Scaling
.
Attributes
- Companion
- class
- Supertypes
- Self type
-
NeuralNet_3L.type
The NeuralNet_XL
class supports multi-output, X-layer (input, hidden(+) and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters [b] connecting the layers, so that for a new input vector v, the net can predict the output value, e.g., yp = f3 (c * f2 (b * f (a * v))) where f, f2 and f3 are the activation functions and the parameter a, b and b are the parameters between input-hidden1, hidden1-hidden2 and hidden2-output layers. Unlike NeuralNet_2L
which adds input x0 = 1 to account for the intercept/bias, NeuralNet_XL
explicitly adds bias. Defaults to two hidden layers. This implementation is partially adapted from Michael Nielsen's Python implementation found in
The NeuralNet_XL
class supports multi-output, X-layer (input, hidden(+) and output) Neural-Networks. It can be used for both classification and prediction, depending on the activation functions used. Given several input vectors and output vectors (training data), fit the parameters [b] connecting the layers, so that for a new input vector v, the net can predict the output value, e.g., yp = f3 (c * f2 (b * f (a * v))) where f, f2 and f3 are the activation functions and the parameter a, b and b are the parameters between input-hidden1, hidden1-hidden2 and hidden2-output layers. Unlike NeuralNet_2L
which adds input x0 = 1 to account for the intercept/bias, NeuralNet_XL
explicitly adds bias. Defaults to two hidden layers. This implementation is partially adapted from Michael Nielsen's Python implementation found in
Value parameters
- f
-
the array of activation function families between every pair of layers
- fname_
-
the feature/variable names (if null, use x_j's)
- hparam
-
the hyper-parameters for the model/network
- itran
-
the inverse transformation function returns response matrix to original scale
- nz
-
the number of nodes in each hidden layer, e.g., Array (9, 8) => 2 hidden of sizes 9 and 8 (null => use default formula)
- x
-
the m-by-n input/data matrix (training data consisting of m input vectors)
- y
-
the m-by-ny output/response matrix (training data consisting of m output vectors)
Attributes
- See also
-
github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network2.py
- Companion
- object
- Supertypes
- Known subtypes
-
class NeuralNet_XLT
The NeuralNet_XL
companion object provides factory methods for creating multi-layer (one+ hidden layers) neural networks. Note, 'scale' is defined in Scaling
.
The NeuralNet_XL
companion object provides factory methods for creating multi-layer (one+ hidden layers) neural networks. Note, 'scale' is defined in Scaling
.
Attributes
- Companion
- class
- Supertypes
- Self type
-
NeuralNet_XL.type
The NeuralNet_XLT
class supports multi-output, multi-layer (input, {hidden} and output) Neural-Networks with Transfer Learning. A layer (first hidden by default) from a neural- network model trained on a related dataset is transferred into that position in this model. Given several input vectors and output vectors (training data), fit the parameters b connecting the layers, so that for a new input vector v, the net can predict the output vector. Caveat: currently only allows the transfer of one layer.
The NeuralNet_XLT
class supports multi-output, multi-layer (input, {hidden} and output) Neural-Networks with Transfer Learning. A layer (first hidden by default) from a neural- network model trained on a related dataset is transferred into that position in this model. Given several input vectors and output vectors (training data), fit the parameters b connecting the layers, so that for a new input vector v, the net can predict the output vector. Caveat: currently only allows the transfer of one layer.
Value parameters
- f
-
the array of activation function families between every pair of layers
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters for the model/network
- itran
-
the inverse transformation function returns responses to original scale
- l_tran
-
the layer to be transferred in (defaults to first hidden layer)
- nz
-
the number of nodes in each hidden layer, e.g., Array (9, 8) => 2 hidden of sizes 9 and 8 (null => use default formula)
- transfer
-
the saved network parameters from a layer of a related neural network trim before passing in if the size does not match
- x
-
the m-by-n input matrix (training data consisting of m input vectors)
- y
-
the m-by-ny output matrix (training data consisting of m output vectors)
Attributes
- Companion
- object
- Supertypes
-
class NeuralNet_XLtrait Fittrait FitMtrait PredictorMVtrait Modelclass Objecttrait Matchableclass AnyShow all
The NeuralNet_XLT
companion object provides factory methods for creating multi-layer (one+ hidden layers) neural networks supporting transfer learning. Note, 'scale' is defined in Scaling
.
The NeuralNet_XLT
companion object provides factory methods for creating multi-layer (one+ hidden layers) neural networks supporting transfer learning. Note, 'scale' is defined in Scaling
.
Attributes
- Companion
- class
- Supertypes
- Self type
-
NeuralNet_XLT.type
The Optimizer
object gives defaults for hyper-parameters as well as other adjustable program constants.
The Optimizer
trait provides methods to optimize and auto_optimize parameters. Given training data x and y for a Neural Network, fit the parameters b.
The Optimizer
trait provides methods to optimize and auto_optimize parameters. Given training data x and y for a Neural Network, fit the parameters b.
Attributes
- Companion
- object
- Supertypes
- Known subtypes
The Optimizer_Adam
class provides functions to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer implements a
The Optimizer_Adam
class provides functions to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer implements a
Attributes
- See also
- Supertypes
-
trait Optimizertrait StoppingRuletrait MonitorLossclass Objecttrait Matchableclass AnyShow all
The Optimizer-SGD
class provides methods to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer implements a Stochastic Gradient Descent algorithm.
The Optimizer-SGD
class provides methods to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer implements a Stochastic Gradient Descent algorithm.
Attributes
- Supertypes
-
trait Optimizertrait StoppingRuletrait MonitorLossclass Objecttrait Matchableclass AnyShow all
The Optimizer_SGDM
class provides functions to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer implements a Stochastic Gradient Descent with Momentum algorithm.
The Optimizer_SGDM
class provides functions to optimize the parameters (weights and biases) of Neural Networks with various numbers of layers. This optimizer implements a Stochastic Gradient Descent with Momentum algorithm.
Attributes
- Supertypes
-
trait Optimizertrait StoppingRuletrait MonitorLossclass Objecttrait Matchableclass AnyShow all
The PredictorMV
trait provides a framwork for multiple predictive analytics techniques, e.g., Multi-variate Regression and Neural Netoworks. x is multi-dimensional [1, x_1, ... x_k] and so is y. Fit the NetParam
parameters bb in for example the regression equation y = f(bb dot x) + e bb is an array of NetParam
where each component is a weight matrix and a bias vector.
The PredictorMV
trait provides a framwork for multiple predictive analytics techniques, e.g., Multi-variate Regression and Neural Netoworks. x is multi-dimensional [1, x_1, ... x_k] and so is y. Fit the NetParam
parameters bb in for example the regression equation y = f(bb dot x) + e bb is an array of NetParam
where each component is a weight matrix and a bias vector.
Value parameters
- fname
-
the feature/variable names (if null, use x_j's)
- hparam
-
the hyper-parameters for the model/network
- x
-
the input/data m-by-n matrix (augment with a first column of ones to include intercept in model or use bias)
- y
-
the response/output m-by-ny matrix
Attributes
- See also
-
NetParam
- Companion
- object
- Supertypes
- Known subtypes
-
class CNN_1Dclass NeuralNet_2Lclass NeuralNet_3Lclass NeuralNet_XLclass NeuralNet_XLTclass RegressionMVShow all
The PredictorMV
companion object provides a method for testing predictive models.
The PredictorMV
companion object provides a method for testing predictive models.
Attributes
- Companion
- trait
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
PredictorMV.type
The RegressionMV
class supports multi-variate multiple linear regression. In this case, x is multi-dimensional [1, x_1, ... x_k] and y is multi-dimensional [y_0, ... y_l]. Fit the parameter vector b in for each regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.) Five factorization algorithms are provided: Fac_QR
QR Factorization: slower, more stable (default) Fac_SVD
Singular Value Decomposition: slowest, most robust Fac_Cholesky
Cholesky Factorization: faster, less stable (reasonable choice) Fac_LU' LU Factorization: better than Inverse
Fac_Inverse` Inverse Factorization: textbook approach
The RegressionMV
class supports multi-variate multiple linear regression. In this case, x is multi-dimensional [1, x_1, ... x_k] and y is multi-dimensional [y_0, ... y_l]. Fit the parameter vector b in for each regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.) Five factorization algorithms are provided: Fac_QR
QR Factorization: slower, more stable (default) Fac_SVD
Singular Value Decomposition: slowest, most robust Fac_Cholesky
Cholesky Factorization: faster, less stable (reasonable choice) Fac_LU' LU Factorization: better than Inverse
Fac_Inverse` Inverse Factorization: textbook approach
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- x
-
the data/input m-by-n matrix (augment with a first column of ones to include intercept in model)
- y
-
the response/output m-by-ny matrix
Attributes
- See also
-
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf Note, not intended for use when the number of degrees of freedom 'df' is negative.
- Companion
- object
- Supertypes
The RegressionMV
companion object provides factory methods for creating multi-variate regression models.
The RegressionMV
companion object provides factory methods for creating multi-variate regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RegressionMV.type
The StoppingRule
trait provides stopping rules to terminating the iterative steps in an optimization early.
The StoppingRule
trait provides stopping rules to terminating the iterative steps in an optimization early.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Value members
Concrete methods
The cNN_1DTest
main function is used to test the CNN_1D
class. Test using the simple example from section 11.10 of ScalaTion textbook. Perform four training steps.
The cNN_1DTest
main function is used to test the CNN_1D
class. Test using the simple example from section 11.10 of ScalaTion textbook. Perform four training steps.
runMain scalation.modeling.neuralnet.cNN_1DTest
Attributes
The cNN_1DTest2
main function is used to test the CNN_1D
class using the AutoMPG dataset.
The cNN_1DTest2
main function is used to test the CNN_1D
class using the AutoMPG dataset.
runMain scalation.modeling.neuralnet.cNN_1DTest2
Attributes
The cNN_1DTest3
main function is used to test the CNN_1D
class for the convolutional operator.
The cNN_1DTest3
main function is used to test the CNN_1D
class for the convolutional operator.
runMain scalation.modeling.neuralnet.cNN_1DTest3
Attributes
The coFilter_1DTest
main function is used to test the CoFilter_1D
class. Test using the simple example from CNN_1D section of the ScalaTion textbook.
The coFilter_1DTest
main function is used to test the CoFilter_1D
class. Test using the simple example from CNN_1D section of the ScalaTion textbook.
runMain scalation.modeling.neuralnet.coFilter_1DTest
Attributes
The coFilter_1DTest2
main function is used to test the CoFilter_1D
class's convolutional operator.
The coFilter_1DTest2
main function is used to test the CoFilter_1D
class's convolutional operator.
runMain scalation.modeling.neuralnet.coFilter_1DTest2
Attributes
The eLM_3L1Test
main function tests the multi-collinearity method in the ELM_3L1
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination. y = b dot x = b_0 + b_1x_1 + b_2x_2 + b_3*x_3 + b_4 * x_4
The eLM_3L1Test
main function tests the multi-collinearity method in the ELM_3L1
class using the following regression equation on the Blood Pressure dataset. It also applies forward selection and backward elimination. y = b dot x = b_0 + b_1x_1 + b_2x_2 + b_3*x_3 + b_4 * x_4
Attributes
- See also
-
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt
runMain scalation.modeling.neuralnet.eLM_3L1Test
The eLM_3L1Test2
main function tests an extreme learning machine on the Example_BasketBall
dataset, comparing its QoF with the QoF for Regression
.
The eLM_3L1Test2
main function tests an extreme learning machine on the Example_BasketBall
dataset, comparing its QoF with the QoF for Regression
.
runMain scalation.modeling.neuralnet.eLM_3L1Test2
Attributes
The eLM_3L1Test3
main function tests an extreme learning machine on the Example_AutoMPG
dataset, comparing its QoF with the QoF for Regression
.
The eLM_3L1Test3
main function tests an extreme learning machine on the Example_AutoMPG
dataset, comparing its QoF with the QoF for Regression
.
runMain scalation.modeling.neuralnet.eLM_3L1Test3
Attributes
The eLM_3L1Test4
main function tests an extreme learning machine on the Example_AutoMPG
dataset. It test cross-validation.
The eLM_3L1Test4
main function tests an extreme learning machine on the Example_AutoMPG
dataset. It test cross-validation.
runMain scalation.modeling.neuralnet.eLM_3L1Test4
Attributes
The eLM_3L1Test5
main function tests an extreme learning machine on the Example_AutoMPG
dataset. It tests forward feature/variable selection.
The eLM_3L1Test5
main function tests an extreme learning machine on the Example_AutoMPG
dataset. It tests forward feature/variable selection.
runMain scalation.modeling.neuralnet.eLM_3L1Test5
Attributes
The eLM_3L1Test6
main function tests an extreme learning machine on the Example_AutoMPG
dataset. It tests forward feature/variable selection with plotting of R^2.
The eLM_3L1Test6
main function tests an extreme learning machine on the Example_AutoMPG
dataset. It tests forward feature/variable selection with plotting of R^2.
runMain scalation.modeling.neuralnet.eLM_3L1Test6
Attributes
The example_ConcreteTest
main function tests the Example_Concrete
object. These test cases compare several modeling techniques. This one runs Regression
and RegressionMV
.
The example_ConcreteTest
main function tests the Example_Concrete
object. These test cases compare several modeling techniques. This one runs Regression
and RegressionMV
.
runMain scalation.modeling.neuralnet.example_ConcreteTest
Attributes
The example_ConcreteTest2
main function is used to test the ExampleConcrete
object. These test cases compare several modeling techniques. This one runs Perceptron
. with trainNtest (manual hyper-parameter tuning).
The example_ConcreteTest2
main function is used to test the ExampleConcrete
object. These test cases compare several modeling techniques. This one runs Perceptron
. with trainNtest (manual hyper-parameter tuning).
runMain scalation.modeling.neuralnet.example_ConcreteTest2
Attributes
The example_ConcreteTest3
main function is used to test the ExampleConcrete
object. These test cases compare several modeling techniques. This one runs NeuralNet_2L
(that effectively is multiplke perceptrons) with trainNtest2 (partially automated hyper-parameter tuning). Compare the overall R^2 for these three test cases.
The example_ConcreteTest3
main function is used to test the ExampleConcrete
object. These test cases compare several modeling techniques. This one runs NeuralNet_2L
(that effectively is multiplke perceptrons) with trainNtest2 (partially automated hyper-parameter tuning). Compare the overall R^2 for these three test cases.
runMain scalation.modeling.neuralnet.example_ConcreteTest3
Attributes
The neuralNet_2LTest
main function is used to test the NeuralNet_2L
class. Try changing the eta and bSize hyper-parameters, as well as the activation function.
The neuralNet_2LTest
main function is used to test the NeuralNet_2L
class. Try changing the eta and bSize hyper-parameters, as well as the activation function.
runMain scalation.modeling.neuralnet.neuralNet_2LTest
Attributes
The neuralNet_2LTest2
main function tests the NeuralNet_2L
class using the Concrete dataset. It has three outputs/response variables. There are two ways to create the model: new NeuralNet_2L (ox, y, ox_fname) - depending on act. function user must rescale NeuralNet_2L.rescale (ox, y, ox_fname) - automatically rescales, assumes matrix response
The neuralNet_2LTest2
main function tests the NeuralNet_2L
class using the Concrete dataset. It has three outputs/response variables. There are two ways to create the model: new NeuralNet_2L (ox, y, ox_fname) - depending on act. function user must rescale NeuralNet_2L.rescale (ox, y, ox_fname) - automatically rescales, assumes matrix response
runMain scalation.modeling.neuralnet.neuralNet_2LTest2
Attributes
The neuralNet_2LTest3
main function tests the NeuralNet_2L
class using the AutoMPG dataset. There are three ways to create the model: new NeuralNet_2L (ox, yy, ox_fname) - depending on act. function user must rescale NeuralNet_2L.rescale (ox, yy, ox_fname) - automatically rescales, assumes matrix response NeuralNet_2L.perceptron (ox, y, ox_fname) - automatically rescales, assumes vector response
The neuralNet_2LTest3
main function tests the NeuralNet_2L
class using the AutoMPG dataset. There are three ways to create the model: new NeuralNet_2L (ox, yy, ox_fname) - depending on act. function user must rescale NeuralNet_2L.rescale (ox, yy, ox_fname) - automatically rescales, assumes matrix response NeuralNet_2L.perceptron (ox, y, ox_fname) - automatically rescales, assumes vector response
runMain scalation.modeling.neuralnet.neuralNet_2LTest3
Attributes
The neuralNet_2LTest4
main function tests the NeuralNet_2L
class using the AutoMPG dataset. It tests forward selection.
The neuralNet_2LTest4
main function tests the NeuralNet_2L
class using the AutoMPG dataset. It tests forward selection.
runMain scalation.modeling.neuralnet.neuralNet_2LTest4
Attributes
The neuralNet_2LTest5
main function tests the NeuralNet_2L
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
The neuralNet_2LTest5
main function tests the NeuralNet_2L
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
runMain scalation.modeling.neuralnet.neuralNet_2LTest5
Attributes
The neuralNet_2LTest6
main function tests the NeuralNet_2L
class using the AutoMPG dataset. It tries all activation functions.
The neuralNet_2LTest6
main function tests the NeuralNet_2L
class using the AutoMPG dataset. It tries all activation functions.
runMain scalation.modeling.neuralnet.neuralNet_2LTest6
Attributes
The neuralNet_2LTest7
main function is used to test the NeuralNet_2L
class. It tests a simple case that does not require a file to be read.
The neuralNet_2LTest7
main function is used to test the NeuralNet_2L
class. It tests a simple case that does not require a file to be read.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.neuralnet.neuralNet_2LTest7
The neuralNet_2LTest8
main function is used to test the NeuralNet_2L
class. It compares NeuralNet_2L.perceptron
using sigmoid with TransRegression
using logit.
The neuralNet_2LTest8
main function is used to test the NeuralNet_2L
class. It compares NeuralNet_2L.perceptron
using sigmoid with TransRegression
using logit.
runMain scalation.modeling.neuralnet.neuralNet_2LTest8
Attributes
The neuralNet_3LTest
main function is used to test the NeuralNet_3L
class. Try changing the eta and bSize hyper-parameters, as well as the activation function.
The neuralNet_3LTest
main function is used to test the NeuralNet_3L
class. Try changing the eta and bSize hyper-parameters, as well as the activation function.
runMain scalation.modeling.neuralnet.neuralNet_3LTest
Attributes
The neuralNet_3LTest10
main function is used to test the NeuralNet_3L
class. It uses the matrix equations from section 10.7.5 on the example problem from section 10.7.8 and 10.7.11 exercises 1 and 2. Tests 9 instances.
The neuralNet_3LTest10
main function is used to test the NeuralNet_3L
class. It uses the matrix equations from section 10.7.5 on the example problem from section 10.7.8 and 10.7.11 exercises 1 and 2. Tests 9 instances.
runMain scalation.modeling.neuralnet.neuralNet_3LTest10
Attributes
The neuralNet_3LTest11
main function is used to test the NeuralNet_3L
class. Tests 9 instances for comparison with AutoDiff
.
The neuralNet_3LTest11
main function is used to test the NeuralNet_3L
class. Tests 9 instances for comparison with AutoDiff
.
Attributes
- See also
-
scalation.calculus.AutoDiff
runMain scalation.modeling.neuralnet.neuralNet_3LTest11
The neuralNet_3LTest2
main function tests the NeuralNet_3L
class using the Concrete dataset. It has three outputs/response variables. There are two ways to create the model: new NeuralNet_3L (x, y, x_fname) - depending on act. function user must rescale NeuralNet_3L.rescale (x, y, x_fname) - automatically rescales, assumes matrix response
The neuralNet_3LTest2
main function tests the NeuralNet_3L
class using the Concrete dataset. It has three outputs/response variables. There are two ways to create the model: new NeuralNet_3L (x, y, x_fname) - depending on act. function user must rescale NeuralNet_3L.rescale (x, y, x_fname) - automatically rescales, assumes matrix response
runMain scalation.modeling.neuralnet.neuralNet_3LTest2
Attributes
The neuralNet_3LTest3
main function tests the NeuralNet_3L
class using the AutoMPG dataset. There are two ways to create the model: new NeuralNet_3L (x, yy, x_fname) - depending on act. function user must rescale NeuralNet_3L.rescale (x, yy, x_fname) - automatically rescales, assumes matrix response
The neuralNet_3LTest3
main function tests the NeuralNet_3L
class using the AutoMPG dataset. There are two ways to create the model: new NeuralNet_3L (x, yy, x_fname) - depending on act. function user must rescale NeuralNet_3L.rescale (x, yy, x_fname) - automatically rescales, assumes matrix response
runMain scalation.modeling.neuralnet.neuralNet_3LTest3
Attributes
The neuralNet_3LTest4
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It tests forward selection.
The neuralNet_3LTest4
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It tests forward selection.
runMain scalation.modeling.neuralnet.neuralNet_3LTest4
Attributes
The neuralNet_3LTest5
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
The neuralNet_3LTest5
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
runMain scalation.modeling.neuralnet.neuralNet_3LTest5
Attributes
The neuralNet_3LTest6
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It tries all activation functions of the form (f, id), Ideally, eta should be initialized separately for each activation function.
The neuralNet_3LTest6
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It tries all activation functions of the form (f, id), Ideally, eta should be initialized separately for each activation function.
runMain scalation.modeling.neuralnet.neuralNet_3LTest6
Attributes
The neuralNet_3LTest7
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It uses the best combination of two features weight and modelyear.
The neuralNet_3LTest7
main function tests the NeuralNet_3L
class using the AutoMPG dataset. It uses the best combination of two features weight and modelyear.
runMain scalation.modeling.neuralnet.neuralNet_3LTest7
Attributes
The neuralNet_3LTest8
main function is used to test the NeuralNet_3L
class. It tests a simple case that does not require a file to be read.
The neuralNet_3LTest8
main function is used to test the NeuralNet_3L
class. It tests a simple case that does not require a file to be read.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.neuralnet.neuralNet_3LTest8
The neuralNet_3LTest9
main function is used to test the NeuralNet_3L
class. It uses the matrix equations from sectioon 10.7.5 on the example problem from section 10.7.8 and 10.7.11 exercises 1 and 2. Tests 1 instance.
The neuralNet_3LTest9
main function is used to test the NeuralNet_3L
class. It uses the matrix equations from sectioon 10.7.5 on the example problem from section 10.7.8 and 10.7.11 exercises 1 and 2. Tests 1 instance.
runMain scalation.modeling.neuralnet.neuralNet_3LTest9
Attributes
The neuralNet_XLTTest
object trains a neural network on the Example_AutoMPG
dataset. This test case does not use transfer learning. A Neural Network with 2 hidden layers is created.
The neuralNet_XLTTest
object trains a neural network on the Example_AutoMPG
dataset. This test case does not use transfer learning. A Neural Network with 2 hidden layers is created.
runMain scalation.modeling.neuralnet.neuralNet_XLTTest
Attributes
The neuralNet_XLTTest2
object trains a neural network on the Example_AutoMPG
dataset. This test case uses transfer learning. A Neural Network with 2 hidden layers is created with the first hidden layer being transferred from a model trained on related data. FIX: find a related dataset for 'nn0'.
The neuralNet_XLTTest2
object trains a neural network on the Example_AutoMPG
dataset. This test case uses transfer learning. A Neural Network with 2 hidden layers is created with the first hidden layer being transferred from a model trained on related data. FIX: find a related dataset for 'nn0'.
runMain scalation.modeling.neuralnet.neuralNet_XLTTest2
Attributes
The neuralNet_XLTest
main function is used to test the NeuralNet_XL
class. Try changing the eta and bSize hyper-parameters, as well as the activation function.
The neuralNet_XLTest
main function is used to test the NeuralNet_XL
class. Try changing the eta and bSize hyper-parameters, as well as the activation function.
runMain scalation.modeling.neuralnet.neuralNet_XLTest
Attributes
The neuralNet_XLTest2
main function tests the NeuralNet_XL
class using the Concrete dataset.
The neuralNet_XLTest2
main function tests the NeuralNet_XL
class using the Concrete dataset.
runMain scalation.modeling.neuralnet.neuralNet_XLTest2
Attributes
The neuralNet_XLTest3
main function tests the NeuralNet_XL
class using the AutoMPG dataset. There are two ways to create the model: new NeuralNet_XL (x, yy, x_fname) - depending on act. function user must rescale NeuralNet_XL.rescale (x, yy, x_fname) - automatically rescales, assumes matrix response
The neuralNet_XLTest3
main function tests the NeuralNet_XL
class using the AutoMPG dataset. There are two ways to create the model: new NeuralNet_XL (x, yy, x_fname) - depending on act. function user must rescale NeuralNet_XL.rescale (x, yy, x_fname) - automatically rescales, assumes matrix response
runMain scalation.modeling.neuralnet.neuralNet_XLTest3
Attributes
The neuralNet_XLTest4
main function tests the NeuralNet_XL
class using the AutoMPG dataset. It tests forward selection.
The neuralNet_XLTest4
main function tests the NeuralNet_XL
class using the AutoMPG dataset. It tests forward selection.
runMain scalation.modeling.neuralnet.neuralNet_XLTest4
Attributes
The neuralNet_XLTest5
main function tests the NeuralNet_XL
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
The neuralNet_XLTest5
main function tests the NeuralNet_XL
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
runMain scalation.modeling.neuralnet.neuralNet_XLTest5
Attributes
The neuralNet_XLTest6
main function tests the NeuralNet_XL
class using the AutoMPG dataset. It tries all activation functions combinations of form (f, g, id). Ideally, eta should be initialized separately for each activation function.
The neuralNet_XLTest6
main function tests the NeuralNet_XL
class using the AutoMPG dataset. It tries all activation functions combinations of form (f, g, id). Ideally, eta should be initialized separately for each activation function.
runMain scalation.modeling.neuralnet.neuralNet_XLTest6
Attributes
The neuralNet_XLTest7
main function is used to test the NeuralNet_XL
class. It tests a simple case that does not require a file to be read.
The neuralNet_XLTest7
main function is used to test the NeuralNet_XL
class. It tests a simple case that does not require a file to be read.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.neuralnet.neuralNet_XLTest7
The predictorMVTest
main function is used to test the PredictorMV
trait and its derived classes using the Example_Concrete
dataset containing data matrices x, ox and response matrix y.
The predictorMVTest
main function is used to test the PredictorMV
trait and its derived classes using the Example_Concrete
dataset containing data matrices x, ox and response matrix y.
runMain scalation.modeling.predictorMVTest
Attributes
The regressionMVTest
main function is used to test the RegressionMV
class.
The regressionMVTest
main function is used to test the RegressionMV
class.
runMain scalation.modeling.neuralnet.regressionMVTest
Attributes
The regressionMVTest2
main function tests the RegressionMV
class using the Concrete dataset.
The regressionMVTest2
main function tests the RegressionMV
class using the Concrete dataset.
runMain scalation.modeling.neuralnet.regressionMVTest2
Attributes
The regressionMVTest3
main function tests the RegressionMV
class using the AutoMPG dataset.
The regressionMVTest3
main function tests the RegressionMV
class using the AutoMPG dataset.
runMain scalation.modeling.neuralnet.regressionMVTest3
Attributes
The regressionMVTest4
main function tests the RegressionMV
class using the AutoMPG dataset. It tests forward selection.
The regressionMVTest4
main function tests the RegressionMV
class using the AutoMPG dataset. It tests forward selection.
runMain scalation.modeling.neuralnet.regressionMVTest4
Attributes
The regressionMVTest5
main function tests the RegressionMV
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
The regressionMVTest5
main function tests the RegressionMV
class using the AutoMPG dataset. It tests forward, backward and stepwise selection.
runMain scalation.modeling.neuralnet.regressionMVTest5