RidgeRegression

scalation.modeling.RidgeRegression
See theRidgeRegression companion class

The RidgeRegression companion object defines hyper-parameters and provides factory methods creating ridge regression models.

Attributes

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def apply(xy: MatrixD, fname: Array[String], hparam: HyperParameter)(col: Int): RidgeRegression

Create a Ridge Regression from a combined data matrix. This function centers the data.

Create a Ridge Regression from a combined data matrix. This function centers the data.

Value parameters

col

the designated response column (defaults to the last column)

fname

the feature/variable names (defaults to null)

hparam

the shrinkage hyper-parameter (0 => OLS) in the penalty term lambda * b dot b

xy

the uncentered data/input m-by-n matrix, NOT augmented with a first column of ones and the uncentered response m-vector (combined)

Attributes

def center(x: MatrixD, y: VectorD, fname: Array[String], hparam: HyperParameter): RidgeRegression

Create a Ridge Regression from a data matrix and response vector. This function centers the data.

Create a Ridge Regression from a data matrix and response vector. This function centers the data.

Value parameters

fname

the feature/variable names (defaults to null)

hparam

the shrinkage hyper-parameter (0 => OLS) in the penalty term 'lambda * b dot b'

x

the uncentered data/input m-by-n matrix, NOT augmented with a first column of ones

y

the uncentered response/output vector

Attributes

def rescale(x: MatrixD, y: VectorD, fname: Array[String], hparam: HyperParameter): RidgeRegression

Concrete fields

Base hyper-parameter specification for RidgeRegression

Base hyper-parameter specification for RidgeRegression

Attributes