RegressionMV

scalation.modeling.neuralnet.RegressionMV
See theRegressionMV companion class
object RegressionMV

The RegressionMV companion object provides factory methods for creating multi-variate regression models.

Attributes

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def apply(xy: MatrixD, fname: Array[String], hparam: HyperParameter)(col: Int): RegressionMV

Create a RegressionMV object from a combined data-response matrix.

Create a RegressionMV object from a combined data-response matrix.

Value parameters

col

the first designated response column (defaults to the last column)

fname

the feature/variable names (defaults to null)

hparam

the hyper-parameters (defaults to Regression.hp)

xy

the combined data-response matrix (predictors and response)

Attributes

def rescale(x: MatrixD, y: MatrixD, fname: Array[String], hparam: HyperParameter): RegressionMV

Create a RegressionMV object from a data matrix and a response matrix. This method provides data rescaling.

Create a RegressionMV object from a data matrix and a response matrix. This method provides data rescaling.

Value parameters

fname

the feature/variable names (use null for default)

hparam

the hyper-parameters (defaults to Regression.hp)

x

the data/input m-by-n matrix (augment with a first column of ones to include intercept in model)

y

the response/output m-vector

Attributes