scalation.modeling.FitM
See theFitM companion object
trait FitM
The FitM
class provides methods to determine basic Quality of Fit 'QoF' metrics/measures suitable for all Models. Note, to work with multiple types of models where degrees of freedom (df) may be hard to calculate, sde uses m-1 rather than df for sample estimates, while rmse uses a population formula (i.e., divide by m). Therefore, in ScalaTion sde will be slightly larger than rmse.
Attributes
- Companion
- object
- Graph
-
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
trait FitCclass BaggingTreesclass RandomForestclass DecisionTree_C45class DecisionTree_C45wpclass DecisionTree_ID3class DecisionTree_ID3wpclass HiddenMarkovclass KNN_Classifierclass LinDiscAnalyisclass NaiveBayesclass NaiveBayesRclass NeuralNet_Class_3Lclass NullModelclass SimpleLDAclass SimpleLogisticRegressionclass LogisticRegressionclass SupportVectorMachineclass TANBayestrait Fitclass ClusteringPredictorclass AR1MAclass CNN_1Dclass ELM_3L1class NeuralNet_2Lclass NeuralNet_3Lclass NeuralNet_XLclass NeuralNet_XLTclass RegressionMVclass ExpRegressionclass FitIclass ARclass ARMAclass ARIMAclass SARIMAclass SARIMAXclass NullModelclass QuadSplineclass RandomWalkclass SimpleExpSmoothingclass SimpleMovingAverageclass TrendModelclass KNN_Regressionclass LassoRegressionclass NonlinearRegressionclass NullModelclass Perceptronclass PoissonRegressionclass Regressionclass ARXclass ARX_Quadclass PolyORegressionclass PolyRegressionclass RegressionCatclass RegressionWLSclass RoundRegressionclass TranRegressionclass TrigRegressionclass RegressionTreeclass RegressionTreeGBclass RegressionTreeMTclass RegressionTreeRFclass RidgeRegressionclass SimpleExpRegressionclass SimpleRegressionclass SimplerRegressionclass TestFit
Members list
In this article