RTensorD

scalation.mathstat.RTensorD
See theRTensorD companion class
object RTensorD

The RTensorD companion object provides factory methods for the RTensorD class.

Attributes

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type
RTensorD.type

Members list

Value members

Concrete methods

def apply(n1: Int, n2: Int, n3: Int): RTensorD

Build an empty rectangular tensor.

Build an empty rectangular tensor.

Value parameters

n1

the first dimension

n2

the second dimension

n3

the third dimension

Attributes

def apply(n: (Int, Int, Int), x: Double*): RTensorD

Build a rectangular tensor from the var-argument list x.

Build a rectangular tensor from the var-argument list x.

Value parameters

n

the three dimensions (n1, n2, n3)

x

the values for the tensor

Attributes

def freq(x: MatrixD, dim2: VectorI, y: VectorI, dim3: Int): RTensorD

Count the joint frequency of occurrence of value pairs (x_ij, y_i) for each column j in the data matrix. Value counts for each column determine dim2, while the value count for y gives dim3.

Count the joint frequency of occurrence of value pairs (x_ij, y_i) for each column j in the data matrix. Value counts for each column determine dim2, while the value count for y gives dim3.

Value parameters

dim2

the varying second dimension of the resulting tensor (# values for each xj)

dim3

the third dimension of the resulting tensor (# values for y)

x

the input/data integer-valued matrix

y

the output/response integer-valued vector

Attributes

def freq(x: VectorI, z: VectorI, dim2: VectorI, y: VectorI, dim3: Int): RTensorD

Count the joint frequency of occurrence of value triples (x_i, z_i, y_i). The value counts for x and z give dim2, while the value count for y gives dim3.

Count the joint frequency of occurrence of value triples (x_i, z_i, y_i). The value counts for x and z give dim2, while the value count for y gives dim3.

Value parameters

dim2

the varying second dimension of the resulting tensor (# values for x and z)

dim3

the third dimension of the resulting tensor (# values for y)

x

the first input/data integer-valued vector

y

the output/response integer-valued vector

z

the second input/data integer-valued vector

Attributes