Imputation
The Imputation
trait specifies an imputation operation called impute to be defined by the objects implementing it, i.e., ImputeRegression
- impute missing values using SimpleRegression
ImputeForward
- impute missing values using previous values and slopes ImputeBackward
- impute missing values using subsequent values and slopes ImputeMean
- impute missing values usind the filtered mean ImputeNormal
- impute missing values using the median of Normal random variates ImputeMovingAvg
- impute missing values using the moving average ImputeNormalWin
- impute missing values using the median of Normal random variates for a window
Attributes
- Graph
-
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
object ImputeBackwardobject ImputeForwardobject ImputeMeanobject ImputeMovingAvgobject ImputeNormalobject ImputeNormalWinobject ImputeRegressionShow all
Members list
Value members
Abstract methods
Concrete methods
Return the index of last missing value in vector x from index i and the new imputed value.
Return the index of last missing value in vector x from index i and the new imputed value.
Value parameters
- i_
-
the starting index to look for missing value
- x
-
the vector with missing values
Attributes
Return the index of first missing value in vector x from index i and the new imputed value.
Return the index of first missing value in vector x from index i and the new imputed value.
Value parameters
- i
-
the starting index to look for missing value
- x
-
the vector with missing values
Attributes
Impute a value for the first missing value in vector x from index i. The type (Int, Double) returns (vector index for imputation, imputed value). Does not modify the vector.
Impute a value for the first missing value in vector x from index i. The type (Int, Double) returns (vector index for imputation, imputed value). Does not modify the vector.
Value parameters
- i
-
the starting index to look for missing values
- x
-
the vector with missing values
Attributes
Replace all missing values in matrix x with imputed values. Will change the values in matrix x. Make a copy to preserve values x.copy.
Replace all missing values in matrix x with imputed values. Will change the values in matrix x. Make a copy to preserve values x.copy.
Value parameters
- x
-
the matrix with missing values
Attributes
Replace all missing values in vector x with imputed values. Will change the values in vector x. Make a copy to preserve values x.copy.
Replace all missing values in vector x with imputed values. Will change the values in vector x. Make a copy to preserve values x.copy.
Value parameters
- x
-
the vector with missing values
Attributes
Return the next non-missing value in vector x from index i. If none, return missVal.
Return the next non-missing value in vector x from index i. If none, return missVal.
Value parameters
- i
-
the starting index to look for non-missing value
- x
-
the vector to be searched for a non-missing value
Attributes
Return the median of three normally distributed random numbers.
Return the median of three normally distributed random numbers.
Value parameters
- mu
-
the mean
- sig2
-
the variance
Attributes
Return the previous non-missing value in vector x from index i. If none, return missVal.
Return the previous non-missing value in vector x from index i. If none, return missVal.
Value parameters
- i
-
the starting index to look for non-missing value
- x
-
the vector to be searched (backwards) for a non-missing value
Attributes
Set the distance dist to the new value dist_.
Set the distance dist to the new value dist_.
Value parameters
- dist_
-
the new value for the distance
Attributes
Set the missing value missVal to the new missing value indicator missVal_.
Set the missing value missVal to the new missing value indicator missVal_.
Value parameters
- missVal_
-
the new missing value indicator