scalation.modeling
Members list
Packages
Type members
Classlikes
The AFF
class holds an Activation Function Family (AFF).
The AFF
class holds an Activation Function Family (AFF).
Value parameters
- arange
-
the (lower, upper) bounds on the input (active) range of the activation function e.g., (-2, 2) for sigmoid, defaults to null => no limit
- bounds
-
the (lower, upper) bounds on the output range of the activation function, e.g., (0, 1) for sigmoid, defaults to null => no limit
- d
-
the vector version of the activation function derivative
- f
-
the activation function itself (scalar version)
- f_
-
the vector version of the activation function
- name
-
the name of the activation function
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The ActivationFun
object contains common Activation functions and provides both scalar and vector versions.
The ActivationFun
object contains common Activation functions and provides both scalar and vector versions.
Attributes
- See also
-
en.wikipedia.org/wiki/Activation_function Convention: fun activation function (e.g., sigmoid) fun_ vector version of activation function (e.g., sigmoid_) funD vector version of dervivative (e.g., sigmoidD)
Supports: id, reLU, lreLU, eLU, tanh, sigmoid, gaussian, softmax Related functions: logistic, logit
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
ActivationFun.type
Detect outliers in the vector by treating anything that falls outside of some distance from the mean as an outlier. Common number of standard deviation units are 2.5, 2.7, 3 and 3.5. The larger the dataset, the greater the number of units that should be used.
Detect outliers in the vector by treating anything that falls outside of some distance from the mean as an outlier. Common number of standard deviation units are 2.5, 2.7, 3 and 3.5. The larger the dataset, the greater the number of units that should be used.
Attributes
- Supertypes
- Self type
-
DistanceOutlier.type
The Example_AutoMPG
object stored the UCI AutoMPG dataset in a matrix.
The Example_AutoMPG
object stored the UCI AutoMPG dataset in a matrix.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_AutoMPG.type
The Example_BPressure
object stores the Blood Pressure dataset in a matrix.
The Example_BPressure
object stores the Blood Pressure dataset in a matrix.
Attributes
- See also
-
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_BPressure.type
The Example_BasketBall
class stores a medium-sized example dataset with data about basketball player that can be used to predict their scoring average.
The Example_BasketBall
class stores a medium-sized example dataset with data about basketball player that can be used to predict their scoring average.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_BasketBall.type
The ExpRegression
class supports exponential regression. In this case, x is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector b in the exponential regression equation log (mu (x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k
The ExpRegression
class supports exponential regression. In this case, x is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector b in the exponential regression equation log (mu (x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (currently none)
- nonneg
-
whether to check that responses are nonnegative (defaults to true)
- x
-
the data/input matrix
- y
-
the response/output vector
Attributes
- See also
- Companion
- object
- Supertypes
The ExpRegression
companion object provides factory methods for creating exponential regression models.
The ExpRegression
companion object provides factory methods for creating exponential regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
ExpRegression.type
The ExpandableVariable
trait provides the framwork for replacing categorical variables with dummy variables. A dummy variable having nl levels is replaced with nl-1 dummy variables.
The ExpandableVariable
trait provides the framwork for replacing categorical variables with dummy variables. A dummy variable having nl levels is replaced with nl-1 dummy variables.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class RegressionCat
The Fit
companion object provides factory methods for assessing quality of fit for standard types of modeling techniques.
The Fit
trait provides methods to determine basic Quality of Fit QoF measures.
The Fit
trait provides methods to determine basic Quality of Fit QoF measures.
Value parameters
- df
-
the degrees of freedom for error
- dfm
-
the degrees of freedom for model/regression
Attributes
- See also
-
reset to reset the degrees of freedom
- Companion
- object
- Supertypes
- Known subtypes
-
class ClusteringPredictorclass AR1MAclass CNN_1Dclass ELM_3L1class NeuralNet_2Lclass NeuralNet_3Lclass NeuralNet_XLclass NeuralNet_XLTclass RegressionMVclass ExpRegressionclass FitIclass ARclass ARMAclass ARIMAclass SARIMAclass SARIMAXclass NullModelclass QuadSplineclass RandomWalkclass SimpleExpSmoothingclass SimpleMovingAverageclass TrendModelclass KNN_Regressionclass LassoRegressionclass NonlinearRegressionclass NullModelclass Perceptronclass PoissonRegressionclass Regressionclass ARXclass ARX_Quadclass PolyORegressionclass PolyRegressionclass RegressionCatclass RegressionWLSclass RoundRegressionclass TranRegressionclass TrigRegressionclass RegressionTreeclass RegressionTreeGBclass RegressionTreeMTclass RegressionTreeRFclass RidgeRegressionclass SimpleExpRegressionclass SimpleRegressionclass SimplerRegressionclass TestFitShow all
The FitI
companion object provides factory methods for assessing quality of fit for standard types of modeling techniques.
The FitI
class provides methods to determine Interval-based Quality of Fit QoFI metrics/measures.
The FitI
class provides methods to determine Interval-based Quality of Fit QoFI metrics/measures.
Value parameters
- df
-
the degrees of freedom for error
- dfm
-
the degrees of freedom for model/regression
Attributes
- See also
-
reset to reset the degrees of freedom
- Companion
- object
- Supertypes
- Known subtypes
-
class ARclass ARMAclass ARIMAclass SARIMAclass SARIMAXclass NullModelclass QuadSplineclass RandomWalkclass SimpleExpSmoothingclass SimpleMovingAverageclass TrendModelShow all
The FitM
class provides methods to determine basic Quality of Fit 'QoF' metrics/measures suitable for all Models. Note, to work with multiple types of models where degrees of freedom (df) may be hard to calculate, sde uses m-1 rather than df for sample estimates, while rmse uses a population formula (i.e., divide by m). Therefore, in ScalaTion sde will be slightly larger than rmse.
The FitM
class provides methods to determine basic Quality of Fit 'QoF' metrics/measures suitable for all Models. Note, to work with multiple types of models where degrees of freedom (df) may be hard to calculate, sde uses m-1 rather than df for sample estimates, while rmse uses a population formula (i.e., divide by m). Therefore, in ScalaTion sde will be slightly larger than rmse.
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
trait FitCclass BaggingTreesclass RandomForestclass DecisionTree_C45class DecisionTree_C45wpclass DecisionTree_ID3class DecisionTree_ID3wpclass HiddenMarkovclass KNN_Classifierclass LinDiscAnalyisclass NaiveBayesclass NaiveBayesRclass NeuralNet_Class_3Lclass NullModelclass SimpleLDAclass SimpleLogisticRegressionclass LogisticRegressionclass SupportVectorMachineclass TANBayestrait Fitclass ClusteringPredictorclass AR1MAclass CNN_1Dclass ELM_3L1class NeuralNet_2Lclass NeuralNet_3Lclass NeuralNet_XLclass NeuralNet_XLTclass RegressionMVclass ExpRegressionclass FitIclass ARclass ARMAclass ARIMAclass SARIMAclass SARIMAXclass NullModelclass QuadSplineclass RandomWalkclass SimpleExpSmoothingclass SimpleMovingAverageclass TrendModelclass KNN_Regressionclass LassoRegressionclass NonlinearRegressionclass NullModelclass Perceptronclass PoissonRegressionclass Regressionclass ARXclass ARX_Quadclass PolyORegressionclass PolyRegressionclass RegressionCatclass RegressionWLSclass RoundRegressionclass TranRegressionclass TrigRegressionclass RegressionTreeclass RegressionTreeGBclass RegressionTreeMTclass RegressionTreeRFclass RidgeRegressionclass SimpleExpRegressionclass SimpleRegressionclass SimplerRegressionclass TestFitShow all
The Imputation
trait specifies an imputation operation called impute to be defined by the objects implementing it, i.e., ImputeRegression
- impute missing values using SimpleRegression
ImputeForward
- impute missing values using previous values and slopes ImputeBackward
- impute missing values using subsequent values and slopes ImputeMean
- impute missing values usind the filtered mean ImputeNormal
- impute missing values using the median of Normal random variates ImputeMovingAvg
- impute missing values using the moving average ImputeNormalWin
- impute missing values using the median of Normal random variates for a window
The Imputation
trait specifies an imputation operation called impute to be defined by the objects implementing it, i.e., ImputeRegression
- impute missing values using SimpleRegression
ImputeForward
- impute missing values using previous values and slopes ImputeBackward
- impute missing values using subsequent values and slopes ImputeMean
- impute missing values usind the filtered mean ImputeNormal
- impute missing values using the median of Normal random variates ImputeMovingAvg
- impute missing values using the moving average ImputeNormalWin
- impute missing values using the median of Normal random variates for a window
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
object ImputeBackwardobject ImputeForwardobject ImputeMeanobject ImputeMovingAvgobject ImputeNormalobject ImputeNormalWinobject ImputeRegressionShow all
The ImputeBackward
object imputes missing values using the subsequent value and slope.
The ImputeBackward
object imputes missing values using the subsequent value and slope.
Attributes
- Supertypes
- Self type
-
ImputeBackward.type
The ImputeForward
object imputes missing values using the previous value and slope.
The ImputeForward
object imputes missing values using the previous value and slope.
Attributes
- Supertypes
- Self type
-
ImputeForward.type
The ImputeMean
object imputes missing values using the filtered mean.
The ImputeMean
object imputes missing values using the filtered mean.
Attributes
- Supertypes
- Self type
-
ImputeMean.type
The ImputeMovingAvg
object imputes missing values using the moving average.
The ImputeMovingAvg
object imputes missing values using the moving average.
Attributes
- Supertypes
- Self type
-
ImputeMovingAvg.type
The ImputeNormal
object imputes missing values using the median Normal variates.
The ImputeNormal
object imputes missing values using the median Normal variates.
Attributes
- Supertypes
- Self type
-
ImputeNormal.type
The ImputeNormalWin
object imputes the missing values in the vector using Normal Distribution for a sliding window.
The ImputeNormalWin
object imputes the missing values in the vector using Normal Distribution for a sliding window.
Attributes
- Supertypes
- Self type
-
ImputeNormalWin.type
The ImputeRegression
object imputes missing values using SimpleRegression
.
The ImputeRegression
object imputes missing values using SimpleRegression
.
Attributes
- Supertypes
- Self type
-
ImputeRegression.type
The Initializer
object provides functions to initialize the parameters/weights of Neural Networks. Supports Uniform, Normal and Nguyen & Widrow methods.
The Initializer
object provides functions to initialize the parameters/weights of Neural Networks. Supports Uniform, Normal and Nguyen & Widrow methods.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Initializer.type
The KNN_Regression
class is used to predict a response value for new vector z. It works by finding its kappa nearest neighbors. These neighbors essentially vote according to their prediction. The consensus is the average individual predictions for z. Using a distance metric, the kappa vectors nearest to z are found in the training data, which are stored row-wise in data matrix x. The corresponding response values are given in the vector y, such that the response value for vector x(i) is given by y(i). WARNING: in-sample testing is only meaningful for large values of hyper-parsameter kappa
The KNN_Regression
class is used to predict a response value for new vector z. It works by finding its kappa nearest neighbors. These neighbors essentially vote according to their prediction. The consensus is the average individual predictions for z. Using a distance metric, the kappa vectors nearest to z are found in the training data, which are stored row-wise in data matrix x. The corresponding response values are given in the vector y, such that the response value for vector x(i) is given by y(i). WARNING: in-sample testing is only meaningful for large values of hyper-parsameter kappa
Value parameters
- fname_
-
the names for all features/variables (defaults to null)
- hparam
-
the number of nearest neighbors to consider (defaults to KNN_Regression.hp)
- x
-
the vectors/points of predictor data stored as rows of a matrix
- y
-
the response value for each vector in x
Attributes
- Companion
- object
- Supertypes
The KNN_Regression
companion object provides factory methods for creating k-nearest neighbor regression models.
The KNN_Regression
companion object provides factory methods for creating k-nearest neighbor regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
KNN_Regression.type
The LassoRegression
class supports multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where 'e' represents the residuals (the part not explained by the model).
The LassoRegression
class supports multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where 'e' represents the residuals (the part not explained by the model).
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the shrinkage hyper-parameter, lambda (0 => OLS) in the penalty term 'lambda * b dot b'
- x
-
the data/input m-by-n matrix
- y
-
the response/output m-vector
Attributes
- See also
-
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
- Companion
- object
- Supertypes
The LassoRegression
companion object provides factory methods for the LassoRegression
class.
The LassoRegression
companion object provides factory methods for the LassoRegression
class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
LassoRegression.type
The Model
trait provides a common framework for all models and serves as base trait for Classifier
, Forecaster
, Predictor
, and PredictorMV
traits. The train and test methods must be called first, e.g., val model = NullModel (y) model.train (null, y) model.test (null, y)
The Model
trait provides a common framework for all models and serves as base trait for Classifier
, Forecaster
, Predictor
, and PredictorMV
traits. The train and test methods must be called first, e.g., val model = NullModel (y) model.train (null, y) model.test (null, y)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
trait Classifierclass BaggingTreesclass RandomForestclass DecisionTree_C45class DecisionTree_C45wpclass DecisionTree_ID3class DecisionTree_ID3wpclass HiddenMarkovclass KNN_Classifierclass LinDiscAnalyisclass NaiveBayesclass NaiveBayesRclass NeuralNet_Class_3Lclass NullModelclass SimpleLDAclass SimpleLogisticRegressionclass LogisticRegressionclass SupportVectorMachineclass TANBayestrait Forecasterclass ARclass AR1MAclass ARMAclass ARIMAclass SARIMAclass SARIMAXclass NullModelclass QuadSplineclass RandomWalkclass SimpleExpSmoothingclass SimpleMovingAverageclass TrendModeltrait PredictorMVclass CNN_1Dclass NeuralNet_2Lclass NeuralNet_3Lclass NeuralNet_XLclass NeuralNet_XLTclass RegressionMVtrait Predictorclass ClusteringPredictorclass ELM_3L1class ExpRegressionclass KNN_Regressionclass LassoRegressionclass NonlinearRegressionclass NullModelclass Perceptronclass PoissonRegressionclass Regressionclass ARXclass ARX_Quadclass PolyORegressionclass PolyRegressionclass RegressionCatclass RegressionWLSclass RoundRegressionclass TranRegressionclass TrigRegressionclass RegressionTreeclass RegressionTreeGBclass RegressionTreeMTclass RegressionTreeRFclass RidgeRegressionclass SimpleExpRegressionclass SimpleRegressionclass SimplerRegressionShow all
The MonitorLoss
trait provides methods to track the converegence of the of optimization algorithms based on the value of the loss function.
The MonitorLoss
trait provides methods to track the converegence of the of optimization algorithms based on the value of the loss function.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
The NoSubModel
trait is for modeling techniques that do not support building sub-models/feature selection (adding/remove variables from the model). For example, SimpleRegression
only has one feature/predictor variable, so feature selection makes no sense for this modeling technique.
The NoSubModel
trait is for modeling techniques that do not support building sub-models/feature selection (adding/remove variables from the model). For example, SimpleRegression
only has one feature/predictor variable, so feature selection makes no sense for this modeling technique.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class NonlinearRegressionclass NullModelclass SimpleExpRegressionclass SimpleRegressionclass SimplerRegression
The Node
class contains information for a tree node.
The Node
class contains information for a tree node.
Value parameters
- b
-
leaf node's prediction parameters (b0 for mean or b for regression)
- branch
-
the branch value (0 => left, 1 => right)
- depth
-
the current depth of the node
- j
-
the feature/variable of the node used for splitting, if it is leaf, contains the feature of its parent
- leaf
-
whether the node is a leaf node
- pfea
-
the feature of parent node
- pthresh
-
the threshold for parent node
- thresh
-
the threshold for continuous feature
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The NonlinearRegression
class supports Nonlinear Regression. In this case, x can be multi-dimensional [1, x1, ... xk] and the function f is nonlinear in the parameters b. Fit the parameter vector b in the regression equation y = f(x, b) + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector b by using Nonlinear Programming to minimize sum of squared errors (sse).
The NonlinearRegression
class supports Nonlinear Regression. In this case, x can be multi-dimensional [1, x1, ... xk] and the function f is nonlinear in the parameters b. Fit the parameter vector b in the regression equation y = f(x, b) + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector b by using Nonlinear Programming to minimize sum of squared errors (sse).
Value parameters
- b_init
-
the initial guess for the parameter vector b
- f
-
the nonlinear function f(x, b) to fit
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (currently has none)
- x
-
the data/input matrix augmented with a first column of ones
- y
-
the response/output vector
Attributes
The NonlinearRegression
companion object provides factory methods for buidling Nonlinear Regression models.
The NonlinearRegression
companion object provides factory methods for buidling Nonlinear Regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
NonlinearRegression.type
The NullModel
class implements the simplest type of predictive modeling technique that just predicts the response y to be the mean. Fit the parameter vector b in the null regression equation
The NullModel
class implements the simplest type of predictive modeling technique that just predicts the response y to be the mean. Fit the parameter vector b in the null regression equation
y = b dot x + e = b0 + e
where e represents the residual/error vector (the part not explained by the model).
Value parameters
- y
-
the response/output vector
Attributes
The Outlier
trait specifies an outlier detection operation to be defined by the objects implementing it, i.e., DistanceOutlier
- outlier = beyond 'STDEV_CUTOFF' units from mean QuantileOutlier
- outlier = in the 'PERCENTILE' tails of the distribution QuartileOutlier
- outlier = 'X_MULTIPLIER' times beyond the middle two quartiles Leaving extreme values in datasets that are highly unlikely to represent legitimate values will reduce the quality of models. However, removing legitimate extreme values will only make the model appear to be good, and it may fail in the real world.
The Outlier
trait specifies an outlier detection operation to be defined by the objects implementing it, i.e., DistanceOutlier
- outlier = beyond 'STDEV_CUTOFF' units from mean QuantileOutlier
- outlier = in the 'PERCENTILE' tails of the distribution QuartileOutlier
- outlier = 'X_MULTIPLIER' times beyond the middle two quartiles Leaving extreme values in datasets that are highly unlikely to represent legitimate values will reduce the quality of models. However, removing legitimate extreme values will only make the model appear to be good, and it may fail in the real world.
Attributes
- See also
-
Imputation
as an alternative to removal of outliers - Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
The Perceptron
class supports single-output, 2-layer (input and output) Neural-Networks. Although perceptrons are typically used for classification, this class is used for prediction. Given several input vectors and output values (training data), fit the weights/parameters b connecting the layers, so that for a new input vector z, the net can predict the output value, i.e., z = f (b dot z) The parameter vector b (w) gives the weights between input and output layers. Note, b0 is treated as the bias, so x0 must be 1.0.
The Perceptron
class supports single-output, 2-layer (input and output) Neural-Networks. Although perceptrons are typically used for classification, this class is used for prediction. Given several input vectors and output values (training data), fit the weights/parameters b connecting the layers, so that for a new input vector z, the net can predict the output value, i.e., z = f (b dot z) The parameter vector b (w) gives the weights between input and output layers. Note, b0 is treated as the bias, so x0 must be 1.0.
Value parameters
- f
-
the activation function family for layers 1->2 (input to output)
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters for the model/network (defaults to Perceptron.hp)
- itran
-
the inverse transformation function returns responses to original scale
- x
-
the data/input m-by-n matrix (data consisting of m input vectors)
- y
-
the response/output m-vector (data consisting of m output values)
Attributes
The Perceptron
companion object provides factory methods for creating perceptrons.
The Perceptron
companion object provides factory methods for creating perceptrons.
Attributes
- Companion
- class
- Supertypes
- Self type
-
Perceptron.type
The PoissonRegression
class supports Poisson regression. In this case, x may be multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the Poisson regression equation log (mu(x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k where e represents the residuals (the part not explained by the model) and y is now integer valued.
The PoissonRegression
class supports Poisson regression. In this case, x may be multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the Poisson regression equation log (mu(x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k where e represents the residuals (the part not explained by the model) and y is now integer valued.
Value parameters
- fname_
-
the names of the features/variables (defaults to null)
- hparam
-
the hyper-parameters (currently has none)
- x
-
the data/input matrix augmented with a first column of ones
- y
-
the integer response/output vector, y_i in {0, 1, ... }
Attributes
- See also
-
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
- Companion
- object
- Supertypes
The PoissonRegression
companion object provides factory methods for creating Poisson regression models.
The PoissonRegression
companion object provides factory methods for creating Poisson regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
PoissonRegression.type
The PolyORegression
class supports orthogonal polynomial regression. In this case, 't' is expanded to an orthononalization of '[1, t, t^2 ... t^k]'. Fit the parameter vector 'b' in the regression equation
The PolyORegression
class supports orthogonal polynomial regression. In this case, 't' is expanded to an orthononalization of '[1, t, t^2 ... t^k]'. Fit the parameter vector 'b' in the regression equation
y = b dot x + e = b_0 + b_1 * t + b_2 * t^2 ... b_k * t^k + e
where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.)
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to PolyRegression.hp)
- ord
-
the order (k) of the polynomial (max degree)
- t
-
the initial data/input m-by-1 matrix: t_i expands to x_i = [1, t_i, t_i^2, ... t_i^k]
- y
-
the response/ouput vector
Attributes
The PolyORegression
companion object provides factory methods for creating orthogonal polynomial regression models and methods for creating functional forms.
The PolyORegression
companion object provides factory methods for creating orthogonal polynomial regression models and methods for creating functional forms.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
PolyORegression.type
The PolyRegression
class supports polynomial regression. In this case, t is expanded to [1, t, t^2 ... t^k]. Fit the parameter vector b in the regression equation y = b dot x + e = b_0 + b_1 * t + b_2 * t^2 ... b_k * t^k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.)
The PolyRegression
class supports polynomial regression. In this case, t is expanded to [1, t, t^2 ... t^k]. Fit the parameter vector b in the regression equation y = b dot x + e = b_0 + b_1 * t + b_2 * t^2 ... b_k * t^k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.)
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to PolyRegression.hp)
- ord
-
the order (k) of the polynomial (max degree)
- t
-
the initial data/input m-by-1 matrix: t_i expands to x_i = [1, t_i, t_i^2, ... t_i^k]
- y
-
the response/ouput vector
Attributes
The PolyRegression
companion object provides factory methods for creating
The PolyRegression
companion object provides factory methods for creating
- polynomial regression models and methods for creating functional forms.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
PolyRegression.type
The Predictor
trait provides a framwork for multiple predictive analytics techniques, e.g., Regression
. x is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector b in for example the regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e
The Predictor
trait provides a framwork for multiple predictive analytics techniques, e.g., Regression
. x is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector b in for example the regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e
Value parameters
- fname
-
the feature/variable names (if null, use x_j's)
- hparam
-
the hyper-parameters for the model
- x
-
the input/data m-by-n matrix (augment with a first column of ones to include intercept in model)
- y
-
the response/output m-vector
Attributes
- Companion
- object
- Supertypes
- Known subtypes
-
class ClusteringPredictorclass ELM_3L1class ExpRegressionclass KNN_Regressionclass LassoRegressionclass NonlinearRegressionclass NullModelclass Perceptronclass PoissonRegressionclass Regressionclass ARXclass ARX_Quadclass PolyORegressionclass PolyRegressionclass RegressionCatclass RegressionWLSclass RoundRegressionclass TranRegressionclass TrigRegressionclass RegressionTreeclass RegressionTreeGBclass RegressionTreeMTclass RegressionTreeRFclass RidgeRegressionclass SimpleExpRegressionclass SimpleRegressionclass SimplerRegressionShow all
The QoF
enum defines the Quality of Fit (QoF) measures/metrics.
The QoF
enum defines the Quality of Fit (QoF) measures/metrics.
Value parameters
- name
-
the name of the parameter
Attributes
- Supertypes
-
trait Enumtrait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The QoFI
enum defines the Interval-based Quality of Fit (QoFI) measures/metrics.
The QoFI
enum defines the Interval-based Quality of Fit (QoFI) measures/metrics.
Value parameters
- name
-
the name of the parameter
Attributes
- Supertypes
-
trait Enumtrait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Detect outliers in the vector by treating anything that falls outside 1-st or 99-th percentile. Common percentiles that may be passed in factor are .0035, .005, .01, .02, and .05. Note, extreme 2% as discussed in textbook corresponds to 1% in left tail and 1% in right tail.
Detect outliers in the vector by treating anything that falls outside 1-st or 99-th percentile. Common percentiles that may be passed in factor are .0035, .005, .01, .02, and .05. Note, extreme 2% as discussed in textbook corresponds to 1% in left tail and 1% in right tail.
Attributes
- Supertypes
- Self type
-
QuantileOutlier.type
Detect outliers in the vector by treating anything that falls below the 1st Quartile or above the 3rd Quartile as an Outlier. Common values for X_MULTIPLIER are 1.5 and 2.0.
Detect outliers in the vector by treating anything that falls below the 1st Quartile or above the 3rd Quartile as an Outlier. Common values for X_MULTIPLIER are 1.5 and 2.0.
Attributes
- Supertypes
- Self type
-
QuartileXOutlier.type
The Regression
class supports multiple linear regression. In this case, x is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector b in the regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.) Five factorization algorithms are provided: Fac_QR
QR Factorization: slower, more stable (default) Fac_SVD
Singular Value Decomposition: slowest, most robust Fac_Cholesky
Cholesky Factorization: faster, less stable (reasonable choice) Fac_LU' LU Factorization: better than Inverse
Fac_Inverse` Inverse Factorization: textbook approach
The Regression
class supports multiple linear regression. In this case, x is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector b in the regression equation y = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.) Five factorization algorithms are provided: Fac_QR
QR Factorization: slower, more stable (default) Fac_SVD
Singular Value Decomposition: slowest, most robust Fac_Cholesky
Cholesky Factorization: faster, less stable (reasonable choice) Fac_LU' LU Factorization: better than Inverse
Fac_Inverse` Inverse Factorization: textbook approach
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- x
-
the data/input m-by-n matrix (augment with a first column of ones to include intercept in model)
- y
-
the response/output m-vector
Attributes
- See also
-
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf Note, not intended for use when the number of degrees of freedom 'df' is negative.
- Companion
- object
- Supertypes
- Known subtypes
-
class ARXclass ARX_Quadclass PolyORegressionclass PolyRegressionclass RegressionCatclass RegressionWLSclass RoundRegressionclass TranRegressionclass TrigRegressionShow all
The Regression
companion object provides factory methods for creating regression models.
The Regression
companion object provides factory methods for creating regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Regression.type
The RegressionCat
class supports Regression that contains Categorical Variables. somtimes called ANalysis of COVAriance (ANCOVA). It allows the addition of categorical (treatment) variables t into a multiple linear regression. This is done by introducing dummy variables dj to distinguish the treatment level. The problem is again to fit the parameter vector b in the augmented regression equation y = b dot x + e = b0 + b_1 * x_1 + b_2 * x_2 + ... b_k * x_k + b_k+1 * d_1 + b_k+2 * d_2 + ... b_k+l * d_l + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.) t has categorical values/levels, e.g., treatment levels (0, ... t.max)
The RegressionCat
class supports Regression that contains Categorical Variables. somtimes called ANalysis of COVAriance (ANCOVA). It allows the addition of categorical (treatment) variables t into a multiple linear regression. This is done by introducing dummy variables dj to distinguish the treatment level. The problem is again to fit the parameter vector b in the augmented regression equation y = b dot x + e = b0 + b_1 * x_1 + b_2 * x_2 + ... b_k * x_k + b_k+1 * d_1 + b_k+2 * d_2 + ... b_k+l * d_l + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector b using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.) t has categorical values/levels, e.g., treatment levels (0, ... t.max)
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- t
-
the treatment/categorical variable matrix
- x_
-
the data/input matrix of continuous variables
- y
-
the response/output vector
Attributes
- See also
-
see.stanford.edu/materials/lsoeldsee263/05-ls.pdf
- Companion
- object
- Supertypes
-
trait ExpandableVariableclass Regressiontrait Fittrait FitMtrait Predictortrait Modelclass Objecttrait Matchableclass AnyShow all
The RegressionCat
companion object provides factory methods and other helper methods.
The RegressionCat
companion object provides factory methods and other helper methods.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RegressionCat.type
The RegressionTree
companion object is used to count the number of leaves and provide factory methods for creating regression trees.
The RegressionTree
companion object is used to count the number of leaves and provide factory methods for creating regression trees.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RegressionTree.type
The RegressionTree
class implements a Regression Tree that recursively partitions the dataset (x, y) by finding a threshold for each feature/x-variable. The threshold for a feature is the value that minimizes sseL + sseR, the sum of the "sum of squared errors".
The RegressionTree
class implements a Regression Tree that recursively partitions the dataset (x, y) by finding a threshold for each feature/x-variable. The threshold for a feature is the value that minimizes sseL + sseR, the sum of the "sum of squared errors".
Value parameters
- branchValue
-
the branch value for the tree node (defaults to -1)
- curDepth
-
current depth (defaults to 0)
- feature
-
the feature for the tree's parent node (defaults to -1)
- fname_
-
the names of the model's features/variables (defaults to null)
- hparam
-
the hyper-parameters for the model (defaults to RegressionTree.hp)
- leaves
-
the leaf counter (defaults to Counter ())
- use_r_fb
-
whether to use (by regression tree) feature bagging (fb) i.e., use a subset of the features, @see
RegressionTreeRF
with parameteruse_fb
- x
-
the m-by-n input/data matrix
- y
-
the output/response m-vector
Attributes
- Companion
- object
- Supertypes
The RegressionTreeGB
class uses Gradient Boosting using RegressionTree
s.
The RegressionTreeGB
class uses Gradient Boosting using RegressionTree
s.
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters for the model (defaults to RegressionTree.hp)
- x
-
the input/data matrix
- y
-
the output/response vector
Attributes
- Companion
- object
- Supertypes
The RegressionTreeGB
companion object defines hyper-parameters and provides a factory methods for creating gradient boosted regression trees.
The RegressionTreeGB
companion object defines hyper-parameters and provides a factory methods for creating gradient boosted regression trees.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RegressionTreeGB.type
The RegressionTreeMT
companion object is used to count the number of leaves and provide factory methods for creating regression model trees.
The RegressionTreeMT
companion object is used to count the number of leaves and provide factory methods for creating regression model trees.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RegressionTreeMT.type
The RegressionTreeMT
class implements a Regression Tree (MT) that selects splitting features using minimal variance in children nodes. To avoid exponential choices in the selection, supporting ordinal features currently.
The RegressionTreeMT
class implements a Regression Tree (MT) that selects splitting features using minimal variance in children nodes. To avoid exponential choices in the selection, supporting ordinal features currently.
Value parameters
- branchValue
-
the branch value for the tree node (defaults to -1)
- curDepth
-
current depth (defaults to 0)
- feature
-
the feature for the tree's parent node (defaults to -1)
- fname_
-
the names of the model's features/variables (defaults to null)
- hparam
-
the hyper-parameters for the model (defaults to RegressionTree.hp)
- leaves
-
the leaf counter (defaults to Counter ())
- x
-
the m-by-n input/data matrix
- y
-
the output/response m-vector
Attributes
- Companion
- object
- Supertypes
The RegressionTreeRF
class uses several randomly built reegression trees for prediction. It randomly selects sub-samples of 'bRatio * x.dim' size from the data x and y to build nTrees regression trees. The predict method uses the average over all trees. Note: By default this class does not select sub-features to build the trees (like Bagging Trees) Set use_fb (feature bagging) to true to turn this capability on
The RegressionTreeRF
class uses several randomly built reegression trees for prediction. It randomly selects sub-samples of 'bRatio * x.dim' size from the data x and y to build nTrees regression trees. The predict method uses the average over all trees. Note: By default this class does not select sub-features to build the trees (like Bagging Trees) Set use_fb (feature bagging) to true to turn this capability on
Value parameters
- fname_
-
the names of the variables/features (defaults to null => auto-generate))
- hparam
-
the hyper-parameters to the random forest (defaults to RegressionTree.hp)
- use_fb
-
whether to use feature bagging (select subsets of the features)
- x
-
the input/data matrix (instances by features)
- y
-
the ouput/response vector (instances)
Attributes
- Supertypes
The RegressionWLS
class supports weighted multiple linear regression. In this case, x is multi-dimensional [1, x_1, ... x_k]. Weights are set to the inverse of a variable's variance, so they can compensate for such variability (heteroscedasticity). Fit the parameter vector b in the regression equation yy = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Weighted Least-Squares (minimizing the residuals) to fit the parameter vector b = fac.solve (.) The data matrix x is reweighted x = rootW * x and the response vector yy is reweighted y = rootW * yy where rootW is the square root of the weights.
The RegressionWLS
class supports weighted multiple linear regression. In this case, x is multi-dimensional [1, x_1, ... x_k]. Weights are set to the inverse of a variable's variance, so they can compensate for such variability (heteroscedasticity). Fit the parameter vector b in the regression equation yy = b dot x + e = b_0 + b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Weighted Least-Squares (minimizing the residuals) to fit the parameter vector b = fac.solve (.) The data matrix x is reweighted x = rootW * x and the response vector yy is reweighted y = rootW * yy where rootW is the square root of the weights.
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- w
-
the weight vector (if null, compute in companion object)
- x
-
the data/input m-by-n matrix (augment with a first column of ones to include intercept in model)
- y
-
the response/output m vector
Attributes
- See also
-
en.wikipedia.org/wiki/Least_squares#Weighted_least_squares These are then passed to Ordinary Least Squares (OLS) Regression. Five factorization techniques are provided: 'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: better than Inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
- Companion
- object
- Supertypes
-
class Regressiontrait Fittrait FitMtrait Predictortrait Modelclass Objecttrait Matchableclass AnyShow all
The RegressionWLS
companion object provides methods for setting weights and testing.
The RegressionWLS
companion object provides methods for setting weights and testing.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RegressionWLS.type
The RidgeRegression
class supports multiple linear ridge regression. In this case, x is multi-dimensional [x_1, ... x_k]. Ridge regression puts a penalty on the L2 norm of the parameters b to reduce the chance of them taking on large values that may lead to less robust models. Both the input matrix x and the response vector y are centered (zero mean). Fit the parameter vector b in the regression equation y = b dot x + e = b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector b using the regularized Normal Equations: b = fac.solve (.) with regularization x.t * x + λ * I Five factorization techniques are provided: 'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: similar, but better than inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
The RidgeRegression
class supports multiple linear ridge regression. In this case, x is multi-dimensional [x_1, ... x_k]. Ridge regression puts a penalty on the L2 norm of the parameters b to reduce the chance of them taking on large values that may lead to less robust models. Both the input matrix x and the response vector y are centered (zero mean). Fit the parameter vector b in the regression equation y = b dot x + e = b_1 * x_1 + ... b_k * x_k + e where e represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector b using the regularized Normal Equations: b = fac.solve (.) with regularization x.t * x + λ * I Five factorization techniques are provided: 'QR' // QR Factorization: slower, more stable (default) 'Cholesky' // Cholesky Factorization: faster, less stable (reasonable choice) 'SVD' // Singular Value Decomposition: slowest, most robust 'LU' // LU Factorization: similar, but better than inverse 'Inverse' // Inverse/Gaussian Elimination, classical textbook technique
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the shrinkage hyper-parameter, lambda (0 => OLS) in the penalty term 'lambda * b dot b'
- x
-
the centered data/input m-by-n matrix NOT augmented with a first column of ones
- y
-
the centered response/output m-vector
Attributes
- See also
-
statweb.stanford.edu/~tibs/ElemStatLearn/
- Companion
- object
- Supertypes
The RidgeRegression
companion object defines hyper-parameters and provides factory methods creating ridge regression models.
The RidgeRegression
companion object defines hyper-parameters and provides factory methods creating ridge regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RidgeRegression.type
The RoundRegression
class supports rounded multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equation y = round (b dot x) + e = round (b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k) + e where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector 'b'
The RoundRegression
class supports rounded multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equation y = round (b dot x) + e = round (b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k) + e where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to fit the parameter vector 'b'
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- x
-
the data/input matrix
- y
-
the response/output vector
Attributes
The RoundRegression
companion object provides factory methods for creating rounded regression models.
The RoundRegression
companion object provides factory methods for creating rounded regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RoundRegression.type
The Scaling
trait supports rescaling of data values. When the scale flag is on/true, the companion object factory apply/rescale functions should rescale or normalize the data appropriately to the particular modeling technique (or even to the level of the activation function used).
The Scaling
trait supports rescaling of data values. When the scale flag is on/true, the companion object factory apply/rescale functions should rescale or normalize the data appropriately to the particular modeling technique (or even to the level of the activation function used).
Attributes
- See also
-
ActivationFun
. In ScalaTion, model constructors do not rescale, but apply/rescale functions that call model constructors need to provide this option. - Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
object NeuralNet_Class_3Lobject ELM_3L1object NeuralNet_2Lobject NeuralNet_3Lobject NeuralNet_XLobject NeuralNet_XLTobject PerceptronShow all
The SelectionTech
enumeration indicates the available feature selection techniques.
The SelectionTech
enumeration indicates the available feature selection techniques.
Attributes
- Supertypes
-
trait Enumtrait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The SimpleExpRegression
class supports exponential regression. In this case, x is [1, x_1]. Fit the parameter vector b in the exponential regression equation log (mu (x)) = b dot x = b_0 + b_1 * x_1
The SimpleExpRegression
class supports exponential regression. In this case, x is [1, x_1]. Fit the parameter vector b in the exponential regression equation log (mu (x)) = b dot x = b_0 + b_1 * x_1
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (currently none)
- nonneg
-
whether to check that responses are nonnegative (defaults to true)
- x
-
the data/input matrix
- y
-
the response/output vector
Attributes
The SimpleExpRegression
companion object provides factory methods for creating simple exponential regression models.
The SimpleExpRegression
companion object provides factory methods for creating simple exponential regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimpleExpRegression.type
The SimpleRegression
class supports simple linear regression. In this case, the vector x consists of the constant one and a single variable x1, i.e., (1, x1). Fit the parameter vector 'b' in the regression equation y = b dot x + e = [b0, b1] dot [1, x1] + e = b0 + b1 * x1 + e where e represents the residuals (the part not explained by the model).
The SimpleRegression
class supports simple linear regression. In this case, the vector x consists of the constant one and a single variable x1, i.e., (1, x1). Fit the parameter vector 'b' in the regression equation y = b dot x + e = [b0, b1] dot [1, x1] + e = b0 + b1 * x1 + e where e represents the residuals (the part not explained by the model).
Value parameters
- fname_
-
the feature/variable names (only use the first two names)(defaults to null)
- x
-
the data/input matrix augmented with a first column of ones (only use the first two columns [1, x1])
- y
-
the response/output vector
Attributes
The SimpleRegression
companion object provides a simple factory method for building simple regression linear regression models.
The SimpleRegression
companion object provides a simple factory method for building simple regression linear regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimpleRegression.type
The SimplerRegression
class supports simpler linear regression. In this case, the vector x consists of a single variable x0. Fit the parameter vector b in the regression equation y = b dot x + e = [b0] dot [x0] + e = b0 * x0 + e where 'e' represents the residuals (the part not explained by the model). The simpler regression model has no intercept parameter, only a slope parameter.
The SimplerRegression
class supports simpler linear regression. In this case, the vector x consists of a single variable x0. Fit the parameter vector b in the regression equation y = b dot x + e = [b0] dot [x0] + e = b0 * x0 + e where 'e' represents the residuals (the part not explained by the model). The simpler regression model has no intercept parameter, only a slope parameter.
Value parameters
- fname_
-
the feature/variable names (only use the first name)(defaults to null)
- x
-
the data/input matrix (only use the first column)
- y
-
the response/output vector
Attributes
The SimplerRegression
companion object provides a simple factory method for building simple regression linear regression models.
The SimplerRegression
companion object provides a simple factory method for building simple regression linear regression models.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimplerRegression.type
The SumQueue
class retains the last q elements as well as the running total in sum and number of elements in size_, making it efficient to compute moving averages.
The SumQueue
class retains the last q elements as well as the running total in sum and number of elements in size_, making it efficient to compute moving averages.
Value parameters
- q
-
the number of elements to retain in the queue
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The SumQueue
class retains the last q elements as well as the running total in sum and number of elements in size_, making it efficient to compute moving averages.
The SumQueue
class retains the last q elements as well as the running total in sum and number of elements in size_, making it efficient to compute moving averages.
Value parameters
- q
-
the number of elements to retain in the queue
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The SymLassoRegression
object supports symbolic ridge regression that allows variables/columns to be raised to various powers, e.g., x^2, x^3, x^.5. Note, x~^p is a column-wise power function (each column raised to p-th power). IMPORTANT: must not include INTERCEPT (column of ones) in initial data matrix), i.e., DO NOT include a column of ones in x (will cause singularity in expanded matrix). Method signatures are the as same as for SymbolicRegression
, except there is NO intercept ARGUMENT.
The SymLassoRegression
object supports symbolic ridge regression that allows variables/columns to be raised to various powers, e.g., x^2, x^3, x^.5. Note, x~^p is a column-wise power function (each column raised to p-th power). IMPORTANT: must not include INTERCEPT (column of ones) in initial data matrix), i.e., DO NOT include a column of ones in x (will cause singularity in expanded matrix). Method signatures are the as same as for SymbolicRegression
, except there is NO intercept ARGUMENT.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SymLassoRegression.type
The SymRidgeRegression
object supports symbolic ridge regression that allows variables/columns to be raised to various powers, e.g., x^2, x^3, x^.5. Note, x~^p is a column-wise power function (each column raised to p-th power). IMPORTANT: must not include INTERCEPT (column of ones) in initial data matrix), i.e., DO NOT include a column of ones in x (will cause singularity in expanded matrix). Method signatures are the as same as for SymbolicRegression
, except there is NO intercept ARGUMENT.
The SymRidgeRegression
object supports symbolic ridge regression that allows variables/columns to be raised to various powers, e.g., x^2, x^3, x^.5. Note, x~^p is a column-wise power function (each column raised to p-th power). IMPORTANT: must not include INTERCEPT (column of ones) in initial data matrix), i.e., DO NOT include a column of ones in x (will cause singularity in expanded matrix). Method signatures are the as same as for SymbolicRegression
, except there is NO intercept ARGUMENT.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SymRidgeRegression.type
The SymbolicRegression
object supports symbolic regression that allows variables/columns to be raised to various powers, e.g., x^2, x^3, x^.5. Note, x~^p is a column-wise power function (each column raised to p-th power). IMPORTANT: must not include intercept (column of ones) in initial data matrix), i.e., DO NOT include a column of ones in x (will cause singularity in expanded matrix).
The SymbolicRegression
object supports symbolic regression that allows variables/columns to be raised to various powers, e.g., x^2, x^3, x^.5. Note, x~^p is a column-wise power function (each column raised to p-th power). IMPORTANT: must not include intercept (column of ones) in initial data matrix), i.e., DO NOT include a column of ones in x (will cause singularity in expanded matrix).
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SymbolicRegression.type
The TestFit
class can be used for comparing two vectors on the basis of QoF. The degrees of freedom (dfm) for the "model" is assumed to be 1. Can be used when the degrees of freedom are not known.
The TestFit
class can be used for comparing two vectors on the basis of QoF. The degrees of freedom (dfm) for the "model" is assumed to be 1. Can be used when the degrees of freedom are not known.
Value parameters
- m
-
the size of vectors to compare
Attributes
- Supertypes
The TranRegression
class supports transformed multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equation transform (y) = b dot x + e = b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k + e where 'e' represents the residuals (the part not explained by the model) and 'transform' is the function (defaults to log) used to transform the response vector 'y'. Common transforms include 'log (y)', 'sqrt (y)' when 'y > 0', or even 'sq (y)', 'exp (y)'. More generally, a Box-Cox Transformation may be applied.
The TranRegression
class supports transformed multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equation transform (y) = b dot x + e = b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k + e where 'e' represents the residuals (the part not explained by the model) and 'transform' is the function (defaults to log) used to transform the response vector 'y'. Common transforms include 'log (y)', 'sqrt (y)' when 'y > 0', or even 'sq (y)', 'exp (y)'. More generally, a Box-Cox Transformation may be applied.
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- itran
-
the inverse transformation function to rescale predictions to original y scale (defaults to exp)
- tran
-
the transformation function (defaults to log)
- x
-
the data/input m-by-n matrix
- y
-
the response/output m-vector
Attributes
- See also
-
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.7176&rep=rep1&type=pdf Use Least-Squares (minimizing the residuals) to fit the parameter vector 'b' Note: this class does not provide transformations on columns of matrix 'x'.
- Companion
- object
- Supertypes
-
class Regressiontrait Fittrait FitMtrait Predictortrait Modelclass Objecttrait Matchableclass AnyShow all
The TranRegression
companion object provides transformation and inverse transformation function based on the parameter 'lambda'. It support the family of Box-Cox transformations.
The TranRegression
companion object provides transformation and inverse transformation function based on the parameter 'lambda'. It support the family of Box-Cox transformations.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
TranRegression.type
The TranRegressionEx
provides a sample dataset for testing purposes. Move the comments on the line used to generate the response y(k) to test 1D and 2D cases.
The TranRegressionEx
provides a sample dataset for testing purposes. Move the comments on the line used to generate the response y(k) to test 1D and 2D cases.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
TranRegressionEx.type
The TrigRegression
class supports trigonometric regression. In this case, 't' is expanded to '[1, sin (wt), cos (wt), sin (2wt), cos (2wt), ...]'. Fit the parameter vector 'b' in the regression equation y = b dot x + e = b_0 + b_1 sin (wt) + b_2 cos (wt) + b_3 sin (2wt) + b_4 cos (2wt) + ... + e where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.)
The TrigRegression
class supports trigonometric regression. In this case, 't' is expanded to '[1, sin (wt), cos (wt), sin (2wt), cos (2wt), ...]'. Fit the parameter vector 'b' in the regression equation y = b dot x + e = b_0 + b_1 sin (wt) + b_2 cos (wt) + b_3 sin (2wt) + b_4 cos (2wt) + ... + e where 'e' represents the residuals (the part not explained by the model). Use Least-Squares (minimizing the residuals) to solve for the parameter vector 'b' using the Normal Equations: x.t * x * b = x.t * y b = fac.solve (.)
Value parameters
- fname_
-
the feature/variable names (defaults to null)
- hparam
-
the hyper-parameters (defaults to Regression.hp)
- ord
-
the order (k), maximum multiplier in the trig function (kwt)
- t
-
the initial data/input m-by-1 matrix: t_i expands to x_i
- y
-
the response/ouput vector
Attributes
The TrigRegression
companion object provides factory methods and functions for creating functional forms.
The TrigRegression
companion object provides factory methods and functions for creating functional forms.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
TrigRegression.type
Several modeling techniques such as decision trees need to divide the values into groups, e.g., for branch values: When 'xj' is categorical, these will be all its distinct values. Otherwise, these will be 0 (up to threshold) or 1 (above threshold).
The Variable
class provides meta-data for a variable including its kind, distinct values, name and optional ontological concept. The variable may be an input variable (feature) or an output variable (response). Typically, it represents a column 'xj' in a data matrix.
Several modeling techniques such as decision trees need to divide the values into groups, e.g., for branch values: When 'xj' is categorical, these will be all its distinct values. Otherwise, these will be 0 (up to threshold) or 1 (above threshold).
Value parameters
- concept
-
an optional URI for an optological concept
- j
-
the index position within the relevant data matrix
- kind
-
indication of the variable kind
- name
-
the name of column (feature or response)
- xj
-
the column vector (feature/response)
Attributes
- See also
-
classifier.Node
for 'threshold' - Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
The VariableKind
enumeration indicates the kind of variable.
The VariableKind
enumeration indicates the kind of variable.
Attributes
- Supertypes
-
trait Enumtrait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Value members
Concrete methods
The activationFunTest
main function tests the ActivationFun
object. This test individually plots the activation function f(t).
The activationFunTest
main function tests the ActivationFun
object. This test individually plots the activation function f(t).
runMain scalation.modeling.activationFunTest
Attributes
The activationFunTest2
main function tests the ActivationFun
object. This test plots similar pairs of activation functions f(t).
The activationFunTest2
main function tests the ActivationFun
object. This test plots similar pairs of activation functions f(t).
runMain scalation.modeling.activationFunTest2
Attributes
The activationFunTest3
main function tests the ActivationFun
object. This test plots the derivatives of the activation functions f'(t).
The activationFunTest3
main function tests the ActivationFun
object. This test plots the derivatives of the activation functions f'(t).
runMain scalation.modeling.activationFunTest2
Attributes
The activationFunTest4
main function tests the ActivationFun
object.
The activationFunTest4
main function tests the ActivationFun
object.
Attributes
- See also
-
en.wikipedia.org/wiki/Softmax_function
runMain scalation.modeling.activationFunTest4
The activationFunTest3
main function tests the ActivationFun
object.
The activationFunTest3
main function tests the ActivationFun
object.
runMain scalation.modeling.activationFunTest5
Attributes
Center matrix x to zero mean, column-wise, by subtracting the mean.
Center matrix x to zero mean, column-wise, by subtracting the mean.
Value parameters
- mu_x
-
the vector of column means of matrix x
- x
-
the matrix to center
Attributes
Denormalize the matrix x_n from zero mean and unit standard deviation, column-wise, by multiplying by the standard deviation and adding the mean. Don't denormalize if the standard deviation is nearly zero.
Denormalize the matrix x_n from zero mean and unit standard deviation, column-wise, by multiplying by the standard deviation and adding the mean. Don't denormalize if the standard deviation is nearly zero.
Value parameters
- mu_sig
-
the mean and standard deviation vectors of original matrix x where mu_x the vector of column means of matrix x sig_x the vector of column standard deviations of matrix x
- x_n
-
the matrix to denormalize
Attributes
Denormalize the vector x_n from zero mean and unit standard deviation, by multiplying by the standard deviation and adding the mean. Don't denormalize if the standard deviation is nearly zero.
Denormalize the vector x_n from zero mean and unit standard deviation, by multiplying by the standard deviation and adding the mean. Don't denormalize if the standard deviation is nearly zero.
Value parameters
- mu_sig
-
the column vector's mean and standard deviation
- x_n
-
the vector to denormalize
Attributes
The example_AutoMPG_Correlation
main function performs correlation analysis on the UCI AutoMPG dataset.
The example_AutoMPG_Correlation
main function performs correlation analysis on the UCI AutoMPG dataset.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
runMain scalation.modeling.example_AutoMPG_Correlation
The example_AutoMPG_NullModel
main function performs NullModel
on the UCI AutoMPG dataset.
The example_AutoMPG_NullModel
main function performs NullModel
on the UCI AutoMPG dataset.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
runMain scalation.modeling.example_AutoMPG_NullModel
The example_AutoMPG_QuadRegression
main function performs quadratic
on the UCI AutoMPG dataset.
The example_AutoMPG_QuadRegression
main function performs quadratic
on the UCI AutoMPG dataset.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
runMain scalation.modeling.example_AutoMPG_QuadRegression
The example_AutoMPG_Regression
main function performs Regression
on the UCI AutoMPG dataset.
The example_AutoMPG_Regression
main function performs Regression
on the UCI AutoMPG dataset.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
runMain scalation.modeling.example_AutoMPG_Regression
The example_AutoMPG_SimpleRegression
main function performs SimpleRegression
on the UCI AutoMPG dataset.
The example_AutoMPG_SimpleRegression
main function performs SimpleRegression
on the UCI AutoMPG dataset.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
runMain scalation.modeling.example_AutoMPG_SimpleRegression
The example_AutoMPG_SimplerRegression
main function performs SimplerRegression
on the UCI AutoMPG dataset.
The example_AutoMPG_SimplerRegression
main function performs SimplerRegression
on the UCI AutoMPG dataset.
Attributes
- See also
-
archive.ics.uci.edu/ml/datasets/Auto+MPG
runMain scalation.modeling.example_AutoMPG_SimplerRegression
The example_BPressureTest
main function tests the Example_BPressure
by printing out of the vectors and matrices.
The example_BPressureTest
main function tests the Example_BPressure
by printing out of the vectors and matrices.
runMain scalation.modeling.example_BPressureTest
Attributes
The example_BPressureTest2
main function tests the multi-collinearity method in the Regression
class using the following regression equation. y = b dot x = b_1x_1 + b_2x_2 + b_3*x_3 + b_4 * x_4
The example_BPressureTest2
main function tests the multi-collinearity method in the Regression
class using the following regression equation. y = b dot x = b_1x_1 + b_2x_2 + b_3*x_3 + b_4 * x_4
Attributes
- See also
-
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt
runMain scalation.modeling.example_BPressureTest2
The example_BasketBallTest
main function tests the Regression
class using the Basketball dataset.
The example_BasketBallTest
main function tests the Regression
class using the Basketball dataset.
runMain scalation.modeling.example_BasketBallTest
Attributes
The expRegressionTest
main function tests ExpRegression
class using the following exponential regression problem.
The expRegressionTest
main function tests ExpRegression
class using the following exponential regression problem.
runMain scalation.modeling.expRegressionTest
Attributes
The expRegressionTest2
main function has a basic test for the ExpRegression
class.
The expRegressionTest2
main function has a basic test for the ExpRegression
class.
runMain scalation.modeling.expRegressionTest
Attributes
Return the extreme values (min, max) for vector x.
Return the extreme values (min, max) for vector x.
Value parameters
- x
-
the vector whose extreme values are sought
Attributes
Return the extreme values (min, max) for matrix x, for each column.
Return the extreme values (min, max) for matrix x, for each column.
Value parameters
- x
-
the matrix whose extreme values are sought
Attributes
Create a random sub-sample of features from matrix x, returning the sub-sample matrix along with the indices selected (as a set).
Create a random sub-sample of features from matrix x, returning the sub-sample matrix along with the indices selected (as a set).
Value parameters
- nFeat
-
the desired number of features in the sub-sample
- stream
-
the random number stream to use
- x
-
the original input/data matrix
Attributes
The fitITest
main function is used to test the FitI
class on a simulated time series.
The fitITest
main function is used to test the FitI
class on a simulated time series.
Attributes
- See also
-
scalation.modeling.forecasting.randomWalkTest3
for another test caserunMain scalation.modeling.fitITest
The fitTest
main function is used to test the Fit
trait on a simulated dataset.
The fitTest
main function is used to test the Fit
trait on a simulated dataset.
runMain scalation.modeling.fitTest
Attributes
The imputationTest
main function is used to test the objects extending the Imputation
trait.
The imputationTest
main function is used to test the objects extending the Imputation
trait.
runMain scalation.modeling.imputationTest
Attributes
The imputationTest2
main function is used to test the objects extending the Imputation
trait.
The imputationTest2
main function is used to test the objects extending the Imputation
trait.
runMain scalation.modeling.imputationTest2
Attributes
The kNN_RegressionTest
main function is used to test the KNN_Regression
class.
The kNN_RegressionTest
main function is used to test the KNN_Regression
class.
runMain scalation.modeling.kNN_RegressionTest
Attributes
The kNN_RegressionTest2
main function is used to test the KNN_Regression
class.
The kNN_RegressionTest2
main function is used to test the KNN_Regression
class.
runMain scalation.modeling.kNN_RegressionTest2
Attributes
The kNN_RegressionTest3
main function is used to test the KNN_predictor
class.
The kNN_RegressionTest3
main function is used to test the KNN_predictor
class.
runMain scalation.modeling.kNN_RegressionTest3
Attributes
The lassoRegressionTest
main function tests LassoRegression
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2. It comapres LassoRegression
to Regression
.
The lassoRegressionTest
main function tests LassoRegression
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2. It comapres LassoRegression
to Regression
.
Attributes
- See also
-
http://statmaster.sdu.dk/courses/st111/module03/index.html
runMain scalation.modeling.lassoRegressionTest
The lassoRegressionTest2
main function tests LassoRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2. Try non-default value for the 'lambda' hyper-parameter.
The lassoRegressionTest2
main function tests LassoRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2. Try non-default value for the 'lambda' hyper-parameter.
runMain scalation.modeling.lassoRegressionTest2
Attributes
The lassoRegressionTest3
main function tests LassoRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2. Test regression, forward selection and backward elimination.
The lassoRegressionTest3
main function tests LassoRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2. Test regression, forward selection and backward elimination.
runMain scalation.modeling.lassoRegressionTest3
Attributes
The matrixTransformTest
main function is used to test the MatrixTransform
object. It tests centering, scaling and normalization.
The matrixTransformTest
main function is used to test the MatrixTransform
object. It tests centering, scaling and normalization.
runMain scalation.modeling.matrixTransformTest
Attributes
The matrixTransformTest2
main function is used to test the MatrixTransform
object. It tests usage of tran and itran functional variables.
The matrixTransformTest2
main function is used to test the MatrixTransform
object. It tests usage of tran and itran functional variables.
runMain scalation.modeling.matrixTransformTest2
Attributes
Return the mean and standard deviation stats for vector x
Return the mean and standard deviation stats for vector x
Value parameters
- x
-
the vector whose stats are sought
Attributes
The nonlinearRegressionTest
object tests the NonlinearRegression
class: y = f(x; b) = b0 + exp (b1 * x0).
The nonlinearRegressionTest
object tests the NonlinearRegression
class: y = f(x; b) = b0 + exp (b1 * x0).
Attributes
- See also
-
www.bsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf Answers: sse = 49.45929986243339 fit = (VectorD (58.606566327280426, -0.03958645286504356), 0.9874574894685292) predict (VectorD (50.0)) = 8.09724678182599 FIX: check this example
runMain scalation.modeling.nonlinearRegressionTest
Normalize the matrix x to zero mean and unit standard deviation, column-wise, by subtracting the mean and dividing by the standard deviation. Don't normalize if the standard deviation is nearly zero.
Normalize the matrix x to zero mean and unit standard deviation, column-wise, by subtracting the mean and dividing by the standard deviation. Don't normalize if the standard deviation is nearly zero.
Value parameters
- mu_sig
-
the mean and standard deviation vectors of original matrix x where mu_x the vector of column means of matrix x sig_x the vector of column standard deviations of matrix x
- x
-
the matrix to normalize
Attributes
Normalize the vector x to zero mean and unit standard deviation, by subtracting the mean and dividing by the standard deviation. Don't normalize if the standard deviation is nearly zero.
Normalize the vector x to zero mean and unit standard deviation, by subtracting the mean and dividing by the standard deviation. Don't normalize if the standard deviation is nearly zero.
Value parameters
- mu_sig
-
the column vector's mean and standard deviation
- x
-
the vector to normalize
Attributes
The nullModelTest
main function is used to test the NullModel
class. y = b dot x + e = b0 + e
The nullModelTest
main function is used to test the NullModel
class. y = b dot x + e = b0 + e
runMain scalation.modeling.nullModelTest
Attributes
The nullModelTest2
main function is used to test the NullModel
class. y = b dot x + e = b0 + e
The nullModelTest2
main function is used to test the NullModel
class. y = b dot x + e = b0 + e
runMain scalation.modeling.nullModelTest2
Attributes
Order vectors y_ and yp_ according to the ascending order of y_. This can be used for graphical comparison or true and predicted values.
Order vectors y_ and yp_ according to the ascending order of y_. This can be used for graphical comparison or true and predicted values.
Value parameters
- y_
-
the vector to order by (e.g., true response values)
- yp_
-
the vector to be order by y_ (e.g., predicted response values)
Attributes
Order matrices y_ and yp_ according to the ascending order of y_ (column vector by column vector). This can be used for graphical comparison or true and predicted values.
Order matrices y_ and yp_ according to the ascending order of y_ (column vector by column vector). This can be used for graphical comparison or true and predicted values.
Value parameters
- y_
-
the matrix to order by (e.g., true response values)
- yp_
-
the matrix to be order by y_ (e.g., predicted response values)
Attributes
The outlierTest
main function is used to test the Outliers Detection techniques presented in the Outliers
trait for a vector of doubles.
The outlierTest
main function is used to test the Outliers Detection techniques presented in the Outliers
trait for a vector of doubles.
runMain scalation.modeling.outlierTest
Attributes
The outlierTest2
main function is used to test the Outliers Detection techniques presented in the Outliers
trait for a matrix and vector doubles.
The outlierTest2
main function is used to test the Outliers Detection techniques presented in the Outliers
trait for a matrix and vector doubles.
runMain scalation.modeling.outlierTest2
Attributes
The outlierTest3
main function is used to test the Outliers Detection techniques presented in the Outliers
trait for a matrix and vector doubles.
The outlierTest3
main function is used to test the Outliers Detection techniques presented in the Outliers
trait for a matrix and vector doubles.
runMain scalation.modeling.outlierTest3
Attributes
The perceptronTest
object trains a perceptron on a small dataset with variables x1 and x2. The model equation is the following: y = sigmoid (b dot x) = sigmoid (b0 + b1x1 + b2x2) Does not call the train method; improvements steps for sigmoid are explicitly in code below.
The perceptronTest
object trains a perceptron on a small dataset with variables x1 and x2. The model equation is the following: y = sigmoid (b dot x) = sigmoid (b0 + b1x1 + b2x2) Does not call the train method; improvements steps for sigmoid are explicitly in code below.
runMain scalation.modeling.perceptronTest
Attributes
The perceptronTest2
object trains a perceptron on a small dataset of temperatures from counties in Texas where the variables/factors to consider are Latitude (x1), Elevation (x2) and Longitude (x3). The model equation is the following: y = sigmoid (w dot x) = sigmoid (w0 + w1x1 + w2x2 + w3*x3) This test case illustrates how to transform the columns of the matrix so that the sigmoid activation function can work effectively.
The perceptronTest2
object trains a perceptron on a small dataset of temperatures from counties in Texas where the variables/factors to consider are Latitude (x1), Elevation (x2) and Longitude (x3). The model equation is the following: y = sigmoid (w dot x) = sigmoid (w0 + w1x1 + w2x2 + w3*x3) This test case illustrates how to transform the columns of the matrix so that the sigmoid activation function can work effectively.
runMain scalation.modeling.perceptronTest2
Attributes
The perceptronTest3
main function tests the Perceptron
class using the AutoMPG dataset. It test cross validation.
The perceptronTest3
main function tests the Perceptron
class using the AutoMPG dataset. It test cross validation.
runMain scalation.modeling.perceptronTest3
Attributes
The perceptronTest4
main function tests the Perceptron
class using the AutoMPG dataset. Assumes no missing values. It tests forward selection.
The perceptronTest4
main function tests the Perceptron
class using the AutoMPG dataset. Assumes no missing values. It tests forward selection.
runMain scalation.modeling.perceptronTest4
Attributes
The perceptronTest5
main function tests the Perceptron
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The perceptronTest5
main function tests the Perceptron
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.perceptronTest5
Attributes
The poissonRegressionTest
main function tests the PoissonRegression
class.
The poissonRegressionTest
main function tests the PoissonRegression
class.
Attributes
- See also
-
http://www.cookbook-r.com/Statistical_analysis/Logistic_regression/ Answer: b = (-8.8331, 0.4304), n_dev = 43.860, r_dev = 25.533, aci = 29.533, pseudo_rSq = 0.4178
runMain scalation.modeling.poissonRegressionTest
The poissonRegressionTest2
main function tests the PoissonRegression
class.
The poissonRegressionTest2
main function tests the PoissonRegression
class.
Attributes
- See also
-
statmaster.sdu.dk/courses/st111/module03/index.html
www.stat.wisc.edu/~mchung/teaching/.../GLM.logistic.Rpackage.pdf
runMain scalation.modeling.poissonRegressionTest2
The polyORegressionTest
object tests PolyORegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k Note, the 'order' at which R-Squared drops is QR(7), Cholesky(14), SVD(6), Inverse(13).
The polyORegressionTest
object tests PolyORegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k Note, the 'order' at which R-Squared drops is QR(7), Cholesky(14), SVD(6), Inverse(13).
runMain scalation.modeling.polyORegressionTest
Attributes
The polyORegressionTest2
object tests PolyORegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k
The polyORegressionTest2
object tests PolyORegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k
runMain scalation.modeling.polyORegressionTest2
Attributes
The polyRegressionTest
main function tests PolyRegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k Note, the order at which R-Squared drops is QR(7), Cholesky(14), SVD(6), Inverse(13).
The polyRegressionTest
main function tests PolyRegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k Note, the order at which R-Squared drops is QR(7), Cholesky(14), SVD(6), Inverse(13).
runMain scalation.modeling.polyRegressionTest
Attributes
The polyRegressionTest2
main function tests PolyRegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k
The polyRegressionTest2
main function tests PolyRegression
class using the following regression equation. y = b dot x = b_0 + b_1t + b_2t^2 + ... b_k*t_k
runMain scalation.modeling.polyRegressionTest2
Attributes
The predictorTest
main function is used to test the Predictor
trait and its derived classes using the Example_AutoMPG
dataset containing data matrices x, ox and response vector y. Shift imports for the Example_BasketBall or Example_BPressure datasets.
The predictorTest
main function is used to test the Predictor
trait and its derived classes using the Example_AutoMPG
dataset containing data matrices x, ox and response vector y. Shift imports for the Example_BasketBall or Example_BPressure datasets.
Attributes
- See also
-
`Example_AutoMPG_Correlation
runMain scalation.modeling.predictorTest
The regressionCatTest
main function tests the RegressionCat
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2 + b_3d_1 + b_4d_2
The regressionCatTest
main function tests the RegressionCat
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2 + b_3d_1 + b_4d_2
runMain scalation.modeling.regressionCatTest
Attributes
The regressionCatTest2
main function tests the RegressionCat
class using the following regression equation.
The regressionCatTest2
main function tests the RegressionCat
class using the following regression equation.
y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*d_1 + b_4*d_2
This version needs the treatment levels to be shift down to zero.
runMain scalation.modeling.regressionCatTest2
Attributes
The regressionCatTest3
main function tests the RegressionCat
object related to related to encoding a column x1 of strings.
The regressionCatTest3
main function tests the RegressionCat
object related to related to encoding a column x1 of strings.
runMain scalation.modeling.regressionCatTest3
Attributes
The regressionCatTest4
main function tests the RegressionCat
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionCatTest4
main function tests the RegressionCat
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionCatTest4
Attributes
The regressionCatTest5
main function tests the RegressionCat
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionCatTest5
main function tests the RegressionCat
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionCatTest5
Attributes
The regressionTest
main function tests Regression
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2.
The regressionTest
main function tests Regression
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2.
Attributes
- See also
-
statmaster.sdu.dk/courses/st111/module03/index.html
runMain scalation.modeling.regressionTest
The regressionTest2
main function is used to test the correctness of the factorization algorithms used to solve for the parameters b in Regression
.
The regressionTest2
main function is used to test the correctness of the factorization algorithms used to solve for the parameters b in Regression
.
Attributes
- See also
-
scalation.mathstat.Fac_QRTest2
runMain scalation.modeling.regressionTest2
The regressionTest3
main function tests the Regression
class using the AutoMPG dataset. Assumes no missing values. It test cross validation.
The regressionTest3
main function tests the Regression
class using the AutoMPG dataset. Assumes no missing values. It test cross validation.
runMain scalation.modeling.regressionTest3
Attributes
The regressionTest4
main function tests the Regression
class using the AutoMPG dataset. Assumes no missing values. It tests forward selection.
The regressionTest4
main function tests the Regression
class using the AutoMPG dataset. Assumes no missing values. It tests forward selection.
runMain scalation.modeling.regressionTest4
Attributes
The regressionTest5
main function tests the Regression
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionTest5
main function tests the Regression
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionTest5
Attributes
The regressionTest6
main function tests the Regression
class using the following regression equation. y = b dot x = b_0 + b_1x1 + b_2x_2. Show effects of increasing collinearity.
The regressionTest6
main function tests the Regression
class using the following regression equation. y = b dot x = b_0 + b_1x1 + b_2x_2. Show effects of increasing collinearity.
runMain scalation.modeling.regressionTest6
Attributes
The regressionTest7
main function trains a regression model on a small dataset of temperatures from counties in Texas where the variables/factors to consider are Latitude (x1), Elevation (x2) and Longitude (x3). The model equation is the following: y = b dot x = b0 + b1x1 + b2x2 + b3*x3
The regressionTest7
main function trains a regression model on a small dataset of temperatures from counties in Texas where the variables/factors to consider are Latitude (x1), Elevation (x2) and Longitude (x3). The model equation is the following: y = b dot x = b0 + b1x1 + b2x2 + b3*x3
runMain scalation.modeling.regressionTest7
Attributes
The regressionTreeGBTest
main function is used to test the RegressionTreeGB
class.
The regressionTreeGBTest
main function is used to test the RegressionTreeGB
class.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.regressionTreeGBTest
The regressionTreeGBTest2
main function tests the RegressionTreeGB
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
The regressionTreeGBTest2
main function tests the RegressionTreeGB
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
runMain scalation.modeling.regressionTreeGBTest2
Attributes
The regressionTreeGBTest3
main function tests the RegressionTreeGB
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionTreeGBTest3
main function tests the RegressionTreeGB
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionTreeGBTest3
Attributes
The regressionTreeGBTest4
main function is used to test the RegressionTreeGB
class. on the Boston House Prices dataset. Use in-sample training testing.
The regressionTreeGBTest4
main function is used to test the RegressionTreeGB
class. on the Boston House Prices dataset. Use in-sample training testing.
runMain scalation.modeling.regressionTreeGBTest4
Attributes
The regressionTreeGBTest5
main function is used to test the RegressionTreeGB
class. on the Boston House Prices dataset. Use train and test split.
The regressionTreeGBTest5
main function is used to test the RegressionTreeGB
class. on the Boston House Prices dataset. Use train and test split.
runMain scalation.modeling.regressionTreeGBTest5
Attributes
The regressionTreeGBTest6
main function is used to test the RegressionTreeGB
class.
The regressionTreeGBTest6
main function is used to test the RegressionTreeGB
class.
runMain scalation.modeling.regressionTreeGBTest6
Attributes
The regressionTreeMTTest
main function is used to test the RegressionTreeMT
class.
The regressionTreeMTTest
main function is used to test the RegressionTreeMT
class.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.regressionTreeMTTest
The regressionTreeMTTest2
main function tests the RegressionTreeMT
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
The regressionTreeMTTest2
main function tests the RegressionTreeMT
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
runMain scalation.modeling.regressionTreeMTTest2
Attributes
The regressionTreeMTTest3
main function tests the RegressionTreeMT
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionTreeMTTest3
main function tests the RegressionTreeMT
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionTreeMTTest3
Attributes
The regressionTreeRFTest
main function is used to test the RegressionTreeRF
class.
The regressionTreeRFTest
main function is used to test the RegressionTreeRF
class.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.regressionTreeRFTest
The regressionTreeRFTest2
main function tests the RegressionTreeRF
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
The regressionTreeRFTest2
main function tests the RegressionTreeRF
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
runMain scalation.modeling.regressionTreeRFTest2
Attributes
The regressionTreeRFTest3
main function tests the RegressionTreeRF
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionTreeRFTest3
main function tests the RegressionTreeRF
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionTreeRFTest3
Attributes
The regressionTreeRFTest4
main function tests the RegressionTreeRF
class using the Boston House Prices dataset.
The regressionTreeRFTest4
main function tests the RegressionTreeRF
class using the Boston House Prices dataset.
runMain scalation.modeling.regressionTreeRFTest4
Attributes
The regressionTreeTest
main function is used to test the RegressionTree
class. It tests a simple case that does not require a file to be read.
The regressionTreeTest
main function is used to test the RegressionTree
class. It tests a simple case that does not require a file to be read.
Attributes
- See also
-
translate.google.com/translate?hl=en&sl=zh-CN&u=https: //www.hrwhisper.me/machine-learning-decision-tree/&prev=search
runMain scalation.modeling.regressionTreeTest
The regressionTreeTest2
main function tests the RegressionTree
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
The regressionTreeTest2
main function tests the RegressionTree
class using the AutoMPG dataset. Assumes no missing values. It tests multiple depths.
runMain scalation.modeling.regressionTreeTest2
Attributes
The regressionTreeTest3
main function tests the RegressionTree
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
The regressionTreeTest3
main function tests the RegressionTree
class using the AutoMPG dataset. Assumes no missing values. It tests forward, backward and stepwise selection.
runMain scalation.modeling.regressionTreeTest3
Attributes
The regressionTreeTest4
main function tests the RegressionTree
class using the Boston House Prices dataset.
The regressionTreeTest4
main function tests the RegressionTree
class using the Boston House Prices dataset.
runMain scalation.modeling.regressionTreeTest4
Attributes
The regressionWLSTest
main function tests RegressionWLS
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2.
The regressionWLSTest
main function tests RegressionWLS
class using the following regression equation. y = b dot x = b_0 + b_1x_1 + b_2x_2.
Attributes
- See also
-
statmaster.sdu.dk/courses/st111/module03/index.html
runMain scalation.modeling.regressionWLSTest
The regressionWLSTest2
main function tests the RegressionWLS
class using the AutoMPG dataset. Assumes no missing values. It test cross validation.
The regressionWLSTest2
main function tests the RegressionWLS
class using the AutoMPG dataset. Assumes no missing values. It test cross validation.
runMain scalation.modeling.regressionWLSTest2
Attributes
The ridgeRegressionTest
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x_1 + b_2x_2. It compares RidgeRegression
with Regression
The ridgeRegressionTest
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x_1 + b_2x_2. It compares RidgeRegression
with Regression
Attributes
- See also
-
statmaster.sdu.dk/courses/st111/module03/index.html
runMain scalation.modeling.ridgeRegressionTest
The ridgeRegressionTest2
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2. Try non-default value for the 'lambda' hyper-parameter.
The ridgeRegressionTest2
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2. Try non-default value for the 'lambda' hyper-parameter.
runMain scalation.modeling.ridgeRegressionTest2
Attributes
The ridgeRegressionTest3
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2 Test regression, forward selection and backward elimination.
The ridgeRegressionTest3
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2 Test regression, forward selection and backward elimination.
runMain scalation.modeling.ridgeRegressionTest3
Attributes
The ridgeRegressionTest4
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2
The ridgeRegressionTest4
main function tests the RidgeRegression
class using the following regression equation. y = b dot x = b_1x1 + b_2x_2
runMain scalation.modeling.ridgeRegressionTest4
Attributes
The ridgeRegressionTest5
main function tests the RidgeRegression
class using the AutoMPG dataset. Assumes no missing values. It also combines feature selection with cross-validation and plots R^2, R^2 bar and R^2 cv vs. the instance index. Note, since x0 is automatically included in feature selection, make it an important variable.
The ridgeRegressionTest5
main function tests the RidgeRegression
class using the AutoMPG dataset. Assumes no missing values. It also combines feature selection with cross-validation and plots R^2, R^2 bar and R^2 cv vs. the instance index. Note, since x0 is automatically included in feature selection, make it an important variable.
runMain scalation.modeling.ridgeRegressionTest5
Attributes
The ridgeRegressionTest6
main function tests the multi-collinearity method in the RidgeRegression
class using the following regression equation. y = b dot x = b_1x_1 + b_2x_2 + b_3*x_3 + b_4 * x_4
The ridgeRegressionTest6
main function tests the multi-collinearity method in the RidgeRegression
class using the following regression equation. y = b dot x = b_1x_1 + b_2x_2 + b_3*x_3 + b_4 * x_4
Attributes
- See also
-
online.stat.psu.edu/online/development/stat501/12multicollinearity/05multico_vif.html
online.stat.psu.edu/online/development/stat501/data/bloodpress.txt
runMain scalation.modeling.ridgeRegressionTest6
The roundRegressionTest
main function tests RoundRegression
class using the following regression equation. y = round (b dot x) = round (b_0 + b_1x_1 + b_2x_2).
The roundRegressionTest
main function tests RoundRegression
class using the following regression equation. y = round (b dot x) = round (b_0 + b_1x_1 + b_2x_2).
runMain scalation.modeling.roundRegressionTest
Attributes
Scale matrix x to the range lb to ub, column-wise: x -> x_s.
Scale matrix x to the range lb to ub, column-wise: x -> x_s.
Value parameters
- bounds
-
the desired (lower, upper) bounds
- extremes
-
the (min_x, max_x) vectors of original matrix x where min_x the vector of column minima of matrix x max_x the vector of column maxima of matrix x
- x
-
the matrix to scale
Attributes
Scale vector x to the range lb to ub: x -> x_s.
Scale vector x to the range lb to ub: x -> x_s.
Value parameters
- bounds
-
the desired (lower, upper) bounds
- extremes
-
the (minimum value, maximum value) in vector x
- x
-
the vector to scale
Attributes
The simpleExpRegressionTest
main function tests SimpleExpRegression
class using the following exponential regression problem.
The simpleExpRegressionTest
main function tests SimpleExpRegression
class using the following exponential regression problem.
runMain scalation.modeling.simpleExpRegressionTest
Attributes
The SimpleExpRegressionTest2
main function tests the SimpleExpRegression
class.
The SimpleExpRegressionTest2
main function tests the SimpleExpRegression
class.
runMain scalation.modeling.simpleExpRegressionTest2
Attributes
The simpleExpRegressionTest3
main function tests the SimpleExpRegression
class.
The simpleExpRegressionTest3
main function tests the SimpleExpRegression
class.
Attributes
- See also
-
http://www.cnachtsheim-text.csom.umn.edu/kut86916_ch13.pdf y = 58.6065 exp (-.03959 x) + e
runMain scalation.modeling.simpleExpRegressionTest3
The simpleRegressionTest
main function to test the SimpleRegression
class. y = b0 + b1 * x
The simpleRegressionTest
main function to test the SimpleRegression
class. y = b0 + b1 * x
runMain scalation.modeling.simpleRegressionTest
Attributes
The simpleRegressionTest2
main function to test the SimpleRegression
class. y = b0 + b1 * x
The simpleRegressionTest2
main function to test the SimpleRegression
class. y = b0 + b1 * x
runMain scalation.modeling.simpleRegressionTest2
Attributes
The simpleRegressionTest3
main function is used to test the SimpleRegression
class. y = b dot x = [b0, b1] dot [1, x1]
The simpleRegressionTest3
main function is used to test the SimpleRegression
class. y = b dot x = [b0, b1] dot [1, x1]
Attributes
- See also
-
www.analyzemath.com/statistics/linear_regression.html
runMain scalation.modeling.simpleRegressionTest3
The simpleRegressionTest4
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1
The simpleRegressionTest4
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1
Attributes
- See also
-
mathbits.com/mathbits/tisection/Statistics2/linear.htm
runMain scalation.modeling.simpleRegressionTest4
The simpleRegressionTest5
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1 This version uses gradient descent to search for the optimal solution for b.
The simpleRegressionTest5
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1 This version uses gradient descent to search for the optimal solution for b.
runMain scalation.modeling.simpleRegressionTest5
Attributes
The simpleRegressionTest6
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1 This version does Exploratory Data Analysis (EDA) on the AutoMPG dataset.
The simpleRegressionTest6
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1 This version does Exploratory Data Analysis (EDA) on the AutoMPG dataset.
runMain scalation.modeling.simpleRegressionTest6
Attributes
The simpleRegressionTest7
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1^2 This version does Exploratory Data Analysis (EDA) on the AutoMPG dataset looking for quadratic patterns.
The simpleRegressionTest7
main function is used to test the SimpleRegression
class. y = b dot x = b0 + b1 * x1^2 This version does Exploratory Data Analysis (EDA) on the AutoMPG dataset looking for quadratic patterns.
runMain scalation.modeling.simpleRegressionTest7
Attributes
The simpleRegressionTest8
main function tests the SimpleRegression
class using a simple dataset and compares it with the NullModel
.
The simpleRegressionTest8
main function tests the SimpleRegression
class using a simple dataset and compares it with the NullModel
.
runMain scalation.modeling.simpleRegressionTest8
Attributes
The simplerRegressionTest
main function is used to test the SimplerRegression
class. y = b0 * x + e
The simplerRegressionTest
main function is used to test the SimplerRegression
class. y = b0 * x + e
runMain scalation.modeling.simplerRegressionTest
Attributes
The simplerRegressionTest2
main function is used to test the SimplerRegression
class. y = b dot x + e = [b0] dot [x0] + e
The simplerRegressionTest2
main function is used to test the SimplerRegression
class. y = b dot x + e = [b0] dot [x0] + e
runMain scalation.modeling.simplerRegressionTest2
Attributes
The simplerRegressionTest3
main function is used to test the SimplerRegression
class. y = b dot x + e = [b0] dot [x0] + e
The simplerRegressionTest3
main function is used to test the SimplerRegression
class. y = b dot x + e = [b0] dot [x0] + e
runMain scalation.modeling.simplerRegressionTest3
Attributes
The simplerRegressionTest4
main function is used to test the SimplerRegression
class. y = b dot x = b0 * x0
The simplerRegressionTest4
main function is used to test the SimplerRegression
class. y = b dot x = b0 * x0
Attributes
- See also
-
mathbits.com/mathbits/tisection/Statistics2/linear.htm
runMain scalation.modeling.simplerRegressionTest4
Create a random sub-sample of rows from matrix x, returning the sub-sample matrix and the indices selected. Must change the stream parameter to get a different subsample.
Create a random sub-sample of rows from matrix x, returning the sub-sample matrix and the indices selected. Must change the stream parameter to get a different subsample.
Value parameters
- nSamp
-
the desired sample size (number of rows in matrix)
- stream
-
the random number stream to use
- x
-
the data original matrix
Attributes
Create a random sub-sample of rows from matrix x and vector y, returning the sub-sample matrix and vector and the indices selected.
Create a random sub-sample of rows from matrix x and vector y, returning the sub-sample matrix and vector and the indices selected.
Value parameters
- nSamp
-
the desired sample size (number of rows in matrix)
- stream
-
the random number stream to use
- x
-
the original input/data matrix
- y
-
the original output/response vector
Attributes
Create a random sub-sample of rows from matrix x and integer-valued vector y, returning the sub-sample matrix and vector and the indices selected.
Create a random sub-sample of rows from matrix x and integer-valued vector y, returning the sub-sample matrix and vector and the indices selected.
Value parameters
- nSamp
-
the desired sample size (number of rows in matrix)
- stream
-
the random number stream to use
- x
-
the original input/data matrix
- y
-
the original integer-valued output/response vector
Attributes
The sumQueueTest
main function is used to test the SumQueue
class.
The sumQueueTest
main function is used to test the SumQueue
class.
runMain scalation.modeling.sumQueueTest
Attributes
The sumQueueTest2
main function is used to test the SumSqQueue
class.
The sumQueueTest2
main function is used to test the SumSqQueue
class.
runMain scalation.modeling.sumQueueTest2
Attributes
The symLassoRegressionTest
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Lasso Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression.
The symLassoRegressionTest
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Lasso Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symLassoRegressionTest
Attributes
The symLassoRegressionTest2
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic Lasso Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
The symLassoRegressionTest2
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic Lasso Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symLassoRegressionTest2
Attributes
The symLassoRegressionTest3
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic X Lasso Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
The symLassoRegressionTest3
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic X Lasso Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symLassoRegressionTest3
Attributes
The symLassoRegressionTest4
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic Lasso Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
The symLassoRegressionTest4
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic Lasso Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symLassoRegressionTest4
Attributes
The symLassoRegressionTest5
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic X Lasso Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
The symLassoRegressionTest5
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic X Lasso Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symLassoRegressionTest5
Attributes
The symLassoRegressionTest6
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic XX Lasso Regression" (with cross, cross3 = true) and applies forward selection, backward elimination, or stepwise regression. WARNING: setting cross3 = true can lead to an explotion of terms.
The symLassoRegressionTest6
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic XX Lasso Regression" (with cross, cross3 = true) and applies forward selection, backward elimination, or stepwise regression. WARNING: setting cross3 = true can lead to an explotion of terms.
runMain scalation.modeling.symLassoRegressionTest6
Attributes
The symLassoRegressionTest7
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Lasso Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression. This test case performs data rescaling.
The symLassoRegressionTest7
main function tests the SymLassoRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Lasso Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression. This test case performs data rescaling.
runMain scalation.modeling.symLassoRegressionTest7
Attributes
The symLassoRegressionTest8
main function tests the SymLassoRegression
object using a simulated gravity dataset. It tests custom "Symbolic Regression", with a custom term: x0 x1^(-2) FIX - acquire a real gravity dataset
The symLassoRegressionTest8
main function tests the SymLassoRegression
object using a simulated gravity dataset. It tests custom "Symbolic Regression", with a custom term: x0 x1^(-2) FIX - acquire a real gravity dataset
runMain scalation.modeling.symLassoRegressionTest8
Attributes
The symLassoRegressionTest9
main function tests the SymLassoRegression
object using a simple dataset to compare Lasso Regression, Quadratic Lasso Regression and Cubic Lasso Regression.
The symLassoRegressionTest9
main function tests the SymLassoRegression
object using a simple dataset to compare Lasso Regression, Quadratic Lasso Regression and Cubic Lasso Regression.
runMain scalation.modeling.symLassoRegressionTest9
Attributes
The symRidgeRegressionTest
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Ridge Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression.
The symRidgeRegressionTest
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Ridge Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symRidgeRegressionTest
Attributes
The symRidgeRegressionTest2
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic Ridge Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
The symRidgeRegressionTest2
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic Ridge Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symRidgeRegressionTest2
Attributes
The symRidgeRegressionTest3
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic X Ridge Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
The symRidgeRegressionTest3
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic X Ridge Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symRidgeRegressionTest3
Attributes
The symRidgeRegressionTest4
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic Ridge Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
The symRidgeRegressionTest4
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic Ridge Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symRidgeRegressionTest4
Attributes
The symRidgeRegressionTest5
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic X Ridge Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
The symRidgeRegressionTest5
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic X Ridge Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symRidgeRegressionTest5
Attributes
The symRidgeRegressionTest6
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic XX Ridge Regression" (with cross, cross3 = true) and applies forward selection, backward elimination, or stepwise regression. WARNING: setting cross3 = true can lead to an explotion of terms.
The symRidgeRegressionTest6
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic XX Ridge Regression" (with cross, cross3 = true) and applies forward selection, backward elimination, or stepwise regression. WARNING: setting cross3 = true can lead to an explotion of terms.
runMain scalation.modeling.symRidgeRegressionTest6
Attributes
The symRidgeRegressionTest7
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Ridge Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression. This test case performs data rescaling.
The symRidgeRegressionTest7
main function tests the SymRidgeRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Ridge Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression. This test case performs data rescaling.
runMain scalation.modeling.symRidgeRegressionTest7
Attributes
The symRidgeRegressionTest8
main function tests the SymRidgeRegression
object using a simulated gravity dataset. It tests custom "Symbolic Regression", with a custom term: x0 x1^(-2) FIX - acquire a real gravity dataset
The symRidgeRegressionTest8
main function tests the SymRidgeRegression
object using a simulated gravity dataset. It tests custom "Symbolic Regression", with a custom term: x0 x1^(-2) FIX - acquire a real gravity dataset
runMain scalation.modeling.symRidgeRegressionTest8
Attributes
The symRidgeRegressionTest9
main function tests the SymRidgeRegression
object using a simple dataset to compare Ridge Regression, Quadratic Ridge Regression and Cubic Ridge Regression.
The symRidgeRegressionTest9
main function tests the SymRidgeRegression
object using a simple dataset to compare Ridge Regression, Quadratic Ridge Regression and Cubic Ridge Regression.
runMain scalation.modeling.symRidgeRegressionTest9
Attributes
The symbolicRegressionTest
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression.
The symbolicRegressionTest
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symbolicRegressionTest
Attributes
The symbolicRegressionTest2
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
The symbolicRegressionTest2
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symbolicRegressionTest2
Attributes
The symbolicRegressionTest3
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic X Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
The symbolicRegressionTest3
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Quadratic X Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symbolicRegressionTest3
Attributes
The symbolicRegressionTest4
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
The symbolicRegressionTest4
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic Regression" (with cross = false) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symbolicRegressionTest4
Attributes
The symbolicRegressionTest5
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic X Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
The symbolicRegressionTest5
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic X Regression" (with cross = true) and applies forward selection, backward elimination, or stepwise regression.
runMain scalation.modeling.symbolicRegressionTest5
Attributes
The symbolicRegressionTest6
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic XX Regression" (with cross, cross3 = true) and applies forward selection, backward elimination, or stepwise regression. WARNING: setting cross3 = true can lead to an explotion of terms.
The symbolicRegressionTest6
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests "Cubic XX Regression" (with cross, cross3 = true) and applies forward selection, backward elimination, or stepwise regression. WARNING: setting cross3 = true can lead to an explotion of terms.
runMain scalation.modeling.symbolicRegressionTest6
Attributes
The symbolicRegressionTest7
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression. This test case performs data rescaling.
The symbolicRegressionTest7
main function tests the SymbolicRegression
object using the AutoMPG dataset. Assumes no missing values. It tests custom "Symbolic Regression", with powers specified in "Set (...)" and applies forward selection, backward elimination, or stepwise regression. This test case performs data rescaling.
runMain scalation.modeling.symbolicRegressionTest7
Attributes
The symbolicRegressionTest8
main function tests the SymbolicRegression
object using a simulated gravity dataset. It tests custom "Symbolic Regression", with a custom term: x0 x1^(-2) FIX - acquire a real gravity dataset
The symbolicRegressionTest8
main function tests the SymbolicRegression
object using a simulated gravity dataset. It tests custom "Symbolic Regression", with a custom term: x0 x1^(-2) FIX - acquire a real gravity dataset
runMain scalation.modeling.symbolicRegressionTest8
Attributes
The symbolicRegressionTest9
main function tests the SymbolicRegression
object using a simple dataset to compare Regression, Quadratic Regression and Cubic Regression.
The symbolicRegressionTest9
main function tests the SymbolicRegression
object using a simple dataset to compare Regression, Quadratic Regression and Cubic Regression.
runMain scalation.modeling.symbolicRegressionTest9
Attributes
The tranRegressionTest
main function tests TranRegression
class using the following regression equation. log (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
The tranRegressionTest
main function tests TranRegression
class using the following regression equation. log (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
runMain scalation.modeling.tranRegressionTest
Attributes
The tranRegressionTest2
main function tests TranRegression
class using the following regression equation. sqrt (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
The tranRegressionTest2
main function tests TranRegression
class using the following regression equation. sqrt (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
runMain scalation.modeling.tranRegressionTest2
Attributes
The tranRegressionTest3
main function tests TranRegression
class using the following regression equation and uses the simulated data in TranRegressionEx
.. sqrt (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
The tranRegressionTest3
main function tests TranRegression
class using the following regression equation and uses the simulated data in TranRegressionEx
.. sqrt (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
Attributes
- See also
-
6.12.9 exercises 1, 2, and 3.
runMain scalation.modeling.tranRegressionTest3
The tranRegressionTest4
main function tests TranRegression
class using the following regression equation. sqrt (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
The tranRegressionTest4
main function tests TranRegression
class using the following regression equation. sqrt (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
runMain scalation.modeling.tranRegressionTest4
Attributes
The tranRegressionTest5
main function tests TranRegression
class using the following regression equation. sigmoid^{-1} (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
The tranRegressionTest5
main function tests TranRegression
class using the following regression equation. sigmoid^{-1} (y) = b dot x = b_0 + b_1x_1 + b_2x_2.
runMain scalation.modeling.tranRegressionTest5
Attributes
The tranRegressionTest6
main function tests TranRegression
class using the following regression equation on the beer foam dataset.
The tranRegressionTest6
main function tests TranRegression
class using the following regression equation on the beer foam dataset.
Attributes
- See also
-
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_2/articles/beer_article.pdf exp (y) = b dot x = b_0 + b_1*x_1.
runMain scalation.modeling.tranRegressionTest6
The tranRegressionTest7
main function tests the TranRegression
class using the AutoMPG dataset. It also combines feature selection with cross-validation and plots R^2, R^2 bar and R^2 cv vs. the instance index.
The tranRegressionTest7
main function tests the TranRegression
class using the AutoMPG dataset. It also combines feature selection with cross-validation and plots R^2, R^2 bar and R^2 cv vs. the instance index.
runMain scalation.modeling.tranRegressionTest7
Attributes
The tranRegressionTest8
main function tests and compares Regression
vs. SymbolicRegression.quadratic
vs. TranRegression
. using the following regression equations. y = b dot x = b_0 + b_1x y = b dot x' = b_0 + b_1x + b_2x^2 y = b dot x' = b_0 + b_1x + b_2x^2 + b_3x^3
The tranRegressionTest8
main function tests and compares Regression
vs. SymbolicRegression.quadratic
vs. TranRegression
. using the following regression equations. y = b dot x = b_0 + b_1x y = b dot x' = b_0 + b_1x + b_2x^2 y = b dot x' = b_0 + b_1x + b_2x^2 + b_3x^3
runMain scalation.modeling.tranRegressionTest8
Attributes
The trigRegressionTest
main function tests TrigRegression
class using the following regression equation.
The trigRegressionTest
main function tests TrigRegression
class using the following regression equation.
y = b dot x = b_0 + b_1 sin wt + b_2 cos wt + ... b_2k-1 sin kwt + b_2k cos kwt + e
The data is generated from a noisy cubic function.
runMain scalation.modeling.trigRegressionTest
Attributes
The trigRegressionTest2
main function tests TrigRegression
class using the following regression equation. y = b dot x = b_0 + b_1 sin wt + b_2 cos wt + ... b_2k-1 sin kwt + b_2k cos kwt + e The data is generated from periodic noisy cubic functions.
The trigRegressionTest2
main function tests TrigRegression
class using the following regression equation. y = b dot x = b_0 + b_1 sin wt + b_2 cos wt + ... b_2k-1 sin kwt + b_2k cos kwt + e The data is generated from periodic noisy cubic functions.
runMain scalation.modeling.trigRegressionTest2
Attributes
Uncenter matrix x_c from zero mean, column-wise, by adding the mean.
Uncenter matrix x_c from zero mean, column-wise, by adding the mean.
Value parameters
- mu_x
-
the vector of column means of matrix x_c
- x_c
-
the matrix to uncenter
Attributes
Unscale matrix x_s from the range lb to ub, column-wise: x_s -> x.
Unscale matrix x_s from the range lb to ub, column-wise: x_s -> x.
Value parameters
- bounds
-
the scaled (lower, upper) bounds
- extremes
-
the (min_x, max_x) vectors of original matrix x where min_x the vector of column minima of matrix x max_x the vector of column maxima of matrix x
- x_s
-
the matrix to unscale
Attributes
Unscale vector x_s from the range lb to ub to original range: x_s -> x.
Unscale vector x_s from the range lb to ub to original range: x_s -> x.
Value parameters
- bounds
-
the scaled (lower, upper) bounds
- extremes
-
the (minimum value, maximum value) in original vector x
- x_s
-
the vector to unscale
Attributes
The variableTest
the conversion of a categorical variable into multiple dummy variables.
The variableTest
the conversion of a categorical variable into multiple dummy variables.
runMain scalation.modeling.variableTest