LassoAdmm

scalation.optimization.LassoAdmm
object LassoAdmm

The LassoAdmm object performs LASSO regression using Alternating Direction Method of Multipliers (ADMM). Minimize the following objective function to find an optimal solutions for x.

argmin_x (1/2)||Ax − b||_2^2 + λ||x||_1

A = data matrix
b = response vector
λ = weighting on the l_1 penalty
x = solution (coefficient vector)

Attributes

See also

euler.stat.yale.edu/~tba3/stat612/lectures/lec23/lecture23.pdf

Graph
Supertypes
class Object
trait Matchable
class Any
Self type
LassoAdmm.type

Members list

Value members

Concrete methods

def reset: Unit

Reset the warm start map.

Reset the warm start map.

Attributes

def solve(a: MatrixD, b: VectorD, λ: Double): VectorD

Solve for x using ADMM.

Solve for x using ADMM.

Value parameters

a

the data matrix

b

the response vector

λ

the regularization l_1 penalty weight

Attributes

def solveCached(ata_ρI_inv: MatrixD, atb: VectorD, λ: Double): VectorD

Solve for x using ADMM using cached factorizations for efficiency.

Solve for x using ADMM using cached factorizations for efficiency.

Value parameters

ata_ρI_inv

cached (a.t * a + ρI)^-1

atb

cached a.t * b

λ

the regularization l_1 penalty weight

Attributes

Concrete fields

val ρ: Int