PolyORegression

scalation.modeling.PolyORegression
See thePolyORegression companion class

The PolyORegression companion object provides factory methods for creating orthogonal polynomial regression models and methods for creating functional forms.

Attributes

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def allForms(x: MatrixD, ord: Int): MatrixD

Create all forms/terms for each row/point placing them in a new matrix.

Create all forms/terms for each row/point placing them in a new matrix.

Value parameters

ord

the order (max degree) of the polynomial

x

the original un-expanded input/data matrix

Attributes

def apply(xy: MatrixD, ord: Int, fname: Array[String], hparam: HyperParameter): PolyORegression

Create a PolyORegression object from a combined data-response matrix.

Create a PolyORegression object from a combined data-response matrix.

Value parameters

fname_

the feature/variable names (defaults to null)

hparam

the hyper-parameters (defaults to PolyRegression.hp)

ord

the order (k) of the polynomial (max degree)

xy

the initial combined data-response matrix (before polynomial term expansion)

Attributes

def apply(t: VectorD, y: VectorD, ord: Int, fname: Array[String], hparam: HyperParameter): PolyORegression

Create a PolyORegression object from a combined data-response matrix.

Create a PolyORegression object from a combined data-response matrix.

Value parameters

fname_

the feature/variable names

hparam

the hyper-parameters

ord

the order (k) of the polynomial (max degree)

t

the initial data/input vector: t_i expands to x_i = [1, t_i, t_i^2, ... t_i^k]

y

the response/ouput vector

Attributes

def forms(v: VectorD, k: Int, nt: Int): VectorD

Given a 1-vector/point 'v', compute the values for all of its polynomial forms/terms, returning them as a vector.

Given a 1-vector/point 'v', compute the values for all of its polynomial forms/terms, returning them as a vector.

Value parameters

k

number of features/predictor variables (not counting intercept) = 1

nt

the number of terms

v

the vector/point (i-th row of t) for creating forms/terms

Attributes

def getA: MatrixD

Get the multipliers for orthogonal polynomials, matrix 'a'. FIX - collecting the 'a' matrix this way may fail for parallel processing

Get the multipliers for orthogonal polynomials, matrix 'a'. FIX - collecting the 'a' matrix this way may fail for parallel processing

Attributes

def numTerms(k: Int): Int

The number of terms/parameters in the model (assumes Regression with intercept).

The number of terms/parameters in the model (assumes Regression with intercept).

Value parameters

k

the number of features/predictor variables (not counting intercept)

Attributes

Orthogonalize the data/input matrix x using Gram-Schmidt Orthogonalization, returning the a new orthogonal matrix z and the orthogonalization multipliers a. This will eliminate the multi-collinearity problem.

Orthogonalize the data/input matrix x using Gram-Schmidt Orthogonalization, returning the a new orthogonal matrix z and the orthogonalization multipliers a. This will eliminate the multi-collinearity problem.

Value parameters

x

the matrix to orthogonalize

Attributes

def rescale(x: MatrixD, y: VectorD, ord: Int, fname: Array[String], hparam: HyperParameter): PolyORegression

Create a PolyORegression object from a data matrix and a response vector. This method provides data rescaling.

Create a PolyORegression object from a data matrix and a response vector. This method provides data rescaling.

Value parameters

fname

the feature/variable names (defaults to null)

hparam

the hyper-parameters (defaults to PolyRegression.hp)

ord

the order (k) of the polynomial (max degree)

x

the initial data/input matrix (before polynomial term expansion)

y

the response/output m-vector

Attributes